Joaquín Miguez, Harold Molina-Bulla, Inés P Mariño
{"title":"广义Kuramoto-Sivashinsky方程同步与参数估计的主从耦合方案。","authors":"Joaquín Miguez, Harold Molina-Bulla, Inés P Mariño","doi":"10.1103/PhysRevE.110.054206","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of estimating the constant parameters of the Kuramoto-Sivashinsky (KS) equation from observed data has received attention from researchers in physics, applied mathematics, and statistics. This is motivated by the various physical applications of the equation and also because it often serves as a test model for the study of space-time pattern formation. Remarkably, most existing inference techniques rely on statistical tools, which are computationally very costly yet do not exploit the dynamical features of the system. In this paper, we introduce a simple, online parameter estimation method that relies on the synchronization properties of the KS equation. In particular, we describe a master-slave setup where the slave model is driven by observations from the master system. The slave dynamics are data-driven and designed to continuously adapt the model parameters until identical synchronization with the master system is achieved. We provide a simple analysis that supports the proposed approach and also present and discuss the results of an extensive set of computer simulations. Our numerical study shows that the proposed method is computationally fast and also robust to initialization errors, observational noise, and variations in the spatial resolution of the numerical scheme used to integrate the KS equation.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054206"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Master-slave coupling scheme for synchronization and parameter estimation in the generalized Kuramoto-Sivashinsky equation.\",\"authors\":\"Joaquín Miguez, Harold Molina-Bulla, Inés P Mariño\",\"doi\":\"10.1103/PhysRevE.110.054206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The problem of estimating the constant parameters of the Kuramoto-Sivashinsky (KS) equation from observed data has received attention from researchers in physics, applied mathematics, and statistics. This is motivated by the various physical applications of the equation and also because it often serves as a test model for the study of space-time pattern formation. Remarkably, most existing inference techniques rely on statistical tools, which are computationally very costly yet do not exploit the dynamical features of the system. In this paper, we introduce a simple, online parameter estimation method that relies on the synchronization properties of the KS equation. In particular, we describe a master-slave setup where the slave model is driven by observations from the master system. The slave dynamics are data-driven and designed to continuously adapt the model parameters until identical synchronization with the master system is achieved. We provide a simple analysis that supports the proposed approach and also present and discuss the results of an extensive set of computer simulations. Our numerical study shows that the proposed method is computationally fast and also robust to initialization errors, observational noise, and variations in the spatial resolution of the numerical scheme used to integrate the KS equation.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054206\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054206\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054206","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Master-slave coupling scheme for synchronization and parameter estimation in the generalized Kuramoto-Sivashinsky equation.
The problem of estimating the constant parameters of the Kuramoto-Sivashinsky (KS) equation from observed data has received attention from researchers in physics, applied mathematics, and statistics. This is motivated by the various physical applications of the equation and also because it often serves as a test model for the study of space-time pattern formation. Remarkably, most existing inference techniques rely on statistical tools, which are computationally very costly yet do not exploit the dynamical features of the system. In this paper, we introduce a simple, online parameter estimation method that relies on the synchronization properties of the KS equation. In particular, we describe a master-slave setup where the slave model is driven by observations from the master system. The slave dynamics are data-driven and designed to continuously adapt the model parameters until identical synchronization with the master system is achieved. We provide a simple analysis that supports the proposed approach and also present and discuss the results of an extensive set of computer simulations. Our numerical study shows that the proposed method is computationally fast and also robust to initialization errors, observational noise, and variations in the spatial resolution of the numerical scheme used to integrate the KS equation.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.