K D Meaney, Y Kim, N M Hoffman, Z L Mohamed, W T Taitano, H W Herrmann, H Geppert-Kleinrath, M P Springstead, A B Zylstra, A Leatherland, L Wilson, V Yu Glebov, C Forrest
{"title":"惯性约束聚变内爆中扩散主导和流体动力主导界面混合分离反应物混合宽度。","authors":"K D Meaney, Y Kim, N M Hoffman, Z L Mohamed, W T Taitano, H W Herrmann, H Geppert-Kleinrath, M P Springstead, A B Zylstra, A Leatherland, L Wilson, V Yu Glebov, C Forrest","doi":"10.1103/PhysRevE.110.055203","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism. This technique has now been expanded across a set of OMEGA ICF implosions, observing an increase in mix width and mix amount for cooler, slower, and more compressive implosions. Hydrodynamic simulations require a buoyancy-drag mix model to capture the increasing mix width, suggesting a transition between these two mix mechanisms.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055203"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separated reactant mix width across diffusion-dominated and hydrodynamically dominated interface mix in inertial confinement fusion implosions.\",\"authors\":\"K D Meaney, Y Kim, N M Hoffman, Z L Mohamed, W T Taitano, H W Herrmann, H Geppert-Kleinrath, M P Springstead, A B Zylstra, A Leatherland, L Wilson, V Yu Glebov, C Forrest\",\"doi\":\"10.1103/PhysRevE.110.055203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism. This technique has now been expanded across a set of OMEGA ICF implosions, observing an increase in mix width and mix amount for cooler, slower, and more compressive implosions. Hydrodynamic simulations require a buoyancy-drag mix model to capture the increasing mix width, suggesting a transition between these two mix mechanisms.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-2\",\"pages\":\"055203\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.055203\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.055203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Separated reactant mix width across diffusion-dominated and hydrodynamically dominated interface mix in inertial confinement fusion implosions.
Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism. This technique has now been expanded across a set of OMEGA ICF implosions, observing an increase in mix width and mix amount for cooler, slower, and more compressive implosions. Hydrodynamic simulations require a buoyancy-drag mix model to capture the increasing mix width, suggesting a transition between these two mix mechanisms.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.