Hibiki Kato, Miki U Kobayashi, Yoshitaka Saiki, James A Yorke
{"title":"紊流吸引子内的层流混沌鞍。","authors":"Hibiki Kato, Miki U Kobayashi, Yoshitaka Saiki, James A Yorke","doi":"10.1103/PhysRevE.110.L052202","DOIUrl":null,"url":null,"abstract":"<p><p>Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. This paper considers a case where the skeleton of a laminar state L exists as a proper chaotic subset S of a chaotic attractor X, that is, S⊊X. We characterize such a laminar state L by a chaotic saddle S, which is densely filled with periodic orbits of different numbers of unstable directions. This study demonstrates the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, we confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5","pages":"L052202"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laminar chaotic saddle within a turbulent attractor.\",\"authors\":\"Hibiki Kato, Miki U Kobayashi, Yoshitaka Saiki, James A Yorke\",\"doi\":\"10.1103/PhysRevE.110.L052202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. This paper considers a case where the skeleton of a laminar state L exists as a proper chaotic subset S of a chaotic attractor X, that is, S⊊X. We characterize such a laminar state L by a chaotic saddle S, which is densely filled with periodic orbits of different numbers of unstable directions. This study demonstrates the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, we confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5\",\"pages\":\"L052202\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.L052202\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.L052202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Laminar chaotic saddle within a turbulent attractor.
Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. This paper considers a case where the skeleton of a laminar state L exists as a proper chaotic subset S of a chaotic attractor X, that is, S⊊X. We characterize such a laminar state L by a chaotic saddle S, which is densely filled with periodic orbits of different numbers of unstable directions. This study demonstrates the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, we confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.