{"title":"意识障碍治疗的革命性变革:脑深部刺激技术进展的多学科回顾。","authors":"Yi Yang, Tian-Qing Cao, Sheng-Hong He, Lu-Chen Wang, Qi-Heng He, Ling-Zhong Fan, Yong-Zhi Huang, Hao-Ran Zhang, Yong Wang, Yuan-Yuan Dang, Nan Wang, Xiao-Ke Chai, Dong Wang, Qiu-Hua Jiang, Xiao-Li Li, Chen Liu, Shou-Yan Wang","doi":"10.1186/s40779-024-00585-w","DOIUrl":null,"url":null,"abstract":"<p><p>Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"81"},"PeriodicalIF":16.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation.\",\"authors\":\"Yi Yang, Tian-Qing Cao, Sheng-Hong He, Lu-Chen Wang, Qi-Heng He, Ling-Zhong Fan, Yong-Zhi Huang, Hao-Ran Zhang, Yong Wang, Yuan-Yuan Dang, Nan Wang, Xiao-Ke Chai, Dong Wang, Qiu-Hua Jiang, Xiao-Li Li, Chen Liu, Shou-Yan Wang\",\"doi\":\"10.1186/s40779-024-00585-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.</p>\",\"PeriodicalId\":18581,\"journal\":{\"name\":\"Military Medical Research\",\"volume\":\"11 1\",\"pages\":\"81\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40779-024-00585-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-024-00585-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation.
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.