{"title":"cGAS/STING 通路在砷诱导的神经毒性中的作用:从星形胶质细胞和神经元之间的串扰中获得启示","authors":"Daopeng Luo, Baofei Sun, Wenjuan Wang, Aihua Zhang","doi":"10.1007/s12011-024-04475-z","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic is a detrimental environmental toxicant linked to neurological damage; however, the mechanisms involved remain incompletely understood. Chronic proinflammatory responses are thought to play a central role in arsenic-induced neurotoxicity. Astrocytes, which are the predominant glial cells in the central nervous system (CNS), release significant amounts of proinflammatory cytokines upon overactivation. However, the molecular mechanisms driving this response remain to be elucidated. This study aimed to elucidate the mechanisms underlying arsenic-induced astrocyte activation and the subsequent neuronal damage, both in vivo and in vitro. In a rat model of arsenic exposure, significant neuropathological damage was detected in the CA3 region of the hippocampus. Specifically, markers of astrocyte activation, such as glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS), as well as the inflammatory cytokine interleukin (IL)-1β, were significantly upregulated, and apoptosis was markedly increased, indicating neurotoxic damage. Furthermore, in vitro experiments revealed that arsenic exposure induced substantial upregulation of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), GFAP, iNOS, and IL-1β in astrocytes, accompanied by an increase in IL-1β secretion into the culture supernatant. In addition, co-culturing neurons with conditioned medium from arsenic-exposed astrocytes resulted in significant neuronal apoptosis. Importantly, the cGAS-STING pathway inhibitor H-151 effectively suppressed the arsenic-induced astrocyte activation and IL-1β secretion, while also reducing neuronal apoptosis in the conditioned medium. Collectively, these results indicate that arsenic exposure activates the cGAS-STING signaling pathway in astrocytes, enhancing proinflammatory activation and IL-1β expression, which in turn mediates neuronal apoptosis, representing a critical mechanism underlying arsenic-induced neurotoxicity.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of the cGAS/STING Pathway in Arsenic-Induced Neurotoxicity: Insights from the Crosstalk Between Astrocytes and Neurons.\",\"authors\":\"Daopeng Luo, Baofei Sun, Wenjuan Wang, Aihua Zhang\",\"doi\":\"10.1007/s12011-024-04475-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic is a detrimental environmental toxicant linked to neurological damage; however, the mechanisms involved remain incompletely understood. Chronic proinflammatory responses are thought to play a central role in arsenic-induced neurotoxicity. Astrocytes, which are the predominant glial cells in the central nervous system (CNS), release significant amounts of proinflammatory cytokines upon overactivation. However, the molecular mechanisms driving this response remain to be elucidated. This study aimed to elucidate the mechanisms underlying arsenic-induced astrocyte activation and the subsequent neuronal damage, both in vivo and in vitro. In a rat model of arsenic exposure, significant neuropathological damage was detected in the CA3 region of the hippocampus. Specifically, markers of astrocyte activation, such as glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS), as well as the inflammatory cytokine interleukin (IL)-1β, were significantly upregulated, and apoptosis was markedly increased, indicating neurotoxic damage. Furthermore, in vitro experiments revealed that arsenic exposure induced substantial upregulation of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), GFAP, iNOS, and IL-1β in astrocytes, accompanied by an increase in IL-1β secretion into the culture supernatant. In addition, co-culturing neurons with conditioned medium from arsenic-exposed astrocytes resulted in significant neuronal apoptosis. Importantly, the cGAS-STING pathway inhibitor H-151 effectively suppressed the arsenic-induced astrocyte activation and IL-1β secretion, while also reducing neuronal apoptosis in the conditioned medium. Collectively, these results indicate that arsenic exposure activates the cGAS-STING signaling pathway in astrocytes, enhancing proinflammatory activation and IL-1β expression, which in turn mediates neuronal apoptosis, representing a critical mechanism underlying arsenic-induced neurotoxicity.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04475-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04475-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Role of the cGAS/STING Pathway in Arsenic-Induced Neurotoxicity: Insights from the Crosstalk Between Astrocytes and Neurons.
Arsenic is a detrimental environmental toxicant linked to neurological damage; however, the mechanisms involved remain incompletely understood. Chronic proinflammatory responses are thought to play a central role in arsenic-induced neurotoxicity. Astrocytes, which are the predominant glial cells in the central nervous system (CNS), release significant amounts of proinflammatory cytokines upon overactivation. However, the molecular mechanisms driving this response remain to be elucidated. This study aimed to elucidate the mechanisms underlying arsenic-induced astrocyte activation and the subsequent neuronal damage, both in vivo and in vitro. In a rat model of arsenic exposure, significant neuropathological damage was detected in the CA3 region of the hippocampus. Specifically, markers of astrocyte activation, such as glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS), as well as the inflammatory cytokine interleukin (IL)-1β, were significantly upregulated, and apoptosis was markedly increased, indicating neurotoxic damage. Furthermore, in vitro experiments revealed that arsenic exposure induced substantial upregulation of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), GFAP, iNOS, and IL-1β in astrocytes, accompanied by an increase in IL-1β secretion into the culture supernatant. In addition, co-culturing neurons with conditioned medium from arsenic-exposed astrocytes resulted in significant neuronal apoptosis. Importantly, the cGAS-STING pathway inhibitor H-151 effectively suppressed the arsenic-induced astrocyte activation and IL-1β secretion, while also reducing neuronal apoptosis in the conditioned medium. Collectively, these results indicate that arsenic exposure activates the cGAS-STING signaling pathway in astrocytes, enhancing proinflammatory activation and IL-1β expression, which in turn mediates neuronal apoptosis, representing a critical mechanism underlying arsenic-induced neurotoxicity.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.