{"title":"瓜蒌提取物对假马勒伯克霍尔德氏菌的杀菌和抗生物膜活性:体外和硅学方法。","authors":"Komgrit Eawsakul, Wiyada Kwanhian Klangbud, Phirabhat Saengsawang, Tassanee Ongtanasup, Kunchaphorn Ratchasong, Ratchadaporn Boripun, Veeranoot Nissapatorn, Maria de Lourdes Pereira, Conny Turni, Fonthip Makkliang, Kawalin Pumbut, Watcharapong Mitsuwan","doi":"10.1080/08927014.2024.2438689","DOIUrl":null,"url":null,"abstract":"<p><p><i>Burkholderia pseudomallei</i> biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of <i>Piper betle</i> extract against <i>B. pseudomallei</i>. The MIC and MBC values of the extract against the isolates were 0.5-1.0 mg/mL. At 2 × MIC, the cells showed cell shrinkage and abnormalities. At 1/2 × MIC, the extract displayed 40-71% inhibition of biofilm formation. At 8 × MIC, the extract reduced the viability of mature biofilms by 60-86%. Hydroxychavicol and eugenol, the main compounds in the extract, showed binding activity to CdpA, an enzyme implicated in biofilms as observed by <i>in silico</i> studies. Hydroxychavicol exhibited the highest affinity for CdpA, with a distance of 2.27 Å. Molecular dynamics simulations revealed that hydroxychavicol forms a stable complex with cyclic di-GMP phosphodiesterase, maintaining protein structural integrity with minimal conformational changes. The results suggested that <i>Piper betle</i> may have medicinal benefits by inhibiting biofilm-related infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bactericidal and antibiofilm activities of <i>Piper betle</i> extract against <i>Burkholderia pseudomallei</i>: <i>in vitro</i> and <i>in silico</i> approaches.\",\"authors\":\"Komgrit Eawsakul, Wiyada Kwanhian Klangbud, Phirabhat Saengsawang, Tassanee Ongtanasup, Kunchaphorn Ratchasong, Ratchadaporn Boripun, Veeranoot Nissapatorn, Maria de Lourdes Pereira, Conny Turni, Fonthip Makkliang, Kawalin Pumbut, Watcharapong Mitsuwan\",\"doi\":\"10.1080/08927014.2024.2438689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Burkholderia pseudomallei</i> biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of <i>Piper betle</i> extract against <i>B. pseudomallei</i>. The MIC and MBC values of the extract against the isolates were 0.5-1.0 mg/mL. At 2 × MIC, the cells showed cell shrinkage and abnormalities. At 1/2 × MIC, the extract displayed 40-71% inhibition of biofilm formation. At 8 × MIC, the extract reduced the viability of mature biofilms by 60-86%. Hydroxychavicol and eugenol, the main compounds in the extract, showed binding activity to CdpA, an enzyme implicated in biofilms as observed by <i>in silico</i> studies. Hydroxychavicol exhibited the highest affinity for CdpA, with a distance of 2.27 Å. Molecular dynamics simulations revealed that hydroxychavicol forms a stable complex with cyclic di-GMP phosphodiesterase, maintaining protein structural integrity with minimal conformational changes. The results suggested that <i>Piper betle</i> may have medicinal benefits by inhibiting biofilm-related infections.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2438689\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2438689","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bactericidal and antibiofilm activities of Piper betle extract against Burkholderia pseudomallei: in vitro and in silico approaches.
Burkholderia pseudomallei biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of Piper betle extract against B. pseudomallei. The MIC and MBC values of the extract against the isolates were 0.5-1.0 mg/mL. At 2 × MIC, the cells showed cell shrinkage and abnormalities. At 1/2 × MIC, the extract displayed 40-71% inhibition of biofilm formation. At 8 × MIC, the extract reduced the viability of mature biofilms by 60-86%. Hydroxychavicol and eugenol, the main compounds in the extract, showed binding activity to CdpA, an enzyme implicated in biofilms as observed by in silico studies. Hydroxychavicol exhibited the highest affinity for CdpA, with a distance of 2.27 Å. Molecular dynamics simulations revealed that hydroxychavicol forms a stable complex with cyclic di-GMP phosphodiesterase, maintaining protein structural integrity with minimal conformational changes. The results suggested that Piper betle may have medicinal benefits by inhibiting biofilm-related infections.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.