粒细胞集落刺激因子通过 STAT3/HOXA10 轴增强子宫内膜基质细胞的蜕膜化过程

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Huakun Zhang, Zhengzhong Wu, Ningjie Yang, Shuhua Wu, Jing Fan, Ping Wang, Xuemei Li
{"title":"粒细胞集落刺激因子通过 STAT3/HOXA10 轴增强子宫内膜基质细胞的蜕膜化过程","authors":"Huakun Zhang, Zhengzhong Wu, Ningjie Yang, Shuhua Wu, Jing Fan, Ping Wang, Xuemei Li","doi":"10.1002/adbi.202400279","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recurrent implantation failure (RIF) is characterized by the repeated failure of implantation, often linked to impaired endometrial receptivity. This study investigates how granulocyte colony-stimulating factor (G-CSF) promotes endometrial stromal cell decidualization.</p><p><strong>Methods: </strong>THESCs (human telomerase reverse transcriptase-immortalized endometrial stromal cells) were used as an in vitro cell model to induce decidualization. The effects of G-CSF on the expression of decidualization genes and apoptosis during decidualization were examined. Additionally, a chemical inhibitor of signal transducer and activator of transcription 3 (STAT3) and the small interfering RNA (siRNA) targeting Homeobox A10 (Hoxa10) were employed to explore the involvement of the STAT3/HOXA10 axis in the action of G-CSF.</p><p><strong>Results: </strong>G-CSF promoted decidualization markers expression and suppressed apoptosis in THESCs Treatment with G-CSF enhanced STAT3 activation during decidualization induction. STAT3 inhibition diminished the effects of G-CSF on decidualization marker expression and apoptosis suppression. Furthermore, it was demonstrated that G-CSF increased Hoxa10 expression in a STAT3-dependent manner. Silencing Hoxa10 abrogated the effects of G-CSF on promoting decidualization.</p><p><strong>Conclusion: </strong>G-CSF enhances decidualization of endometrial stromal cells via STAT3/HOXA10 axis activation. These findings suggest that optimal G-CSF delivery strategies could improve endometrial receptivity in RIF patients.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400279"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granulocyte Colony Stimulating Factor Enhances Decidualization Process of Endometrial Stromal Cells Through STAT3/HOXA10 Axis.\",\"authors\":\"Huakun Zhang, Zhengzhong Wu, Ningjie Yang, Shuhua Wu, Jing Fan, Ping Wang, Xuemei Li\",\"doi\":\"10.1002/adbi.202400279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recurrent implantation failure (RIF) is characterized by the repeated failure of implantation, often linked to impaired endometrial receptivity. This study investigates how granulocyte colony-stimulating factor (G-CSF) promotes endometrial stromal cell decidualization.</p><p><strong>Methods: </strong>THESCs (human telomerase reverse transcriptase-immortalized endometrial stromal cells) were used as an in vitro cell model to induce decidualization. The effects of G-CSF on the expression of decidualization genes and apoptosis during decidualization were examined. Additionally, a chemical inhibitor of signal transducer and activator of transcription 3 (STAT3) and the small interfering RNA (siRNA) targeting Homeobox A10 (Hoxa10) were employed to explore the involvement of the STAT3/HOXA10 axis in the action of G-CSF.</p><p><strong>Results: </strong>G-CSF promoted decidualization markers expression and suppressed apoptosis in THESCs Treatment with G-CSF enhanced STAT3 activation during decidualization induction. STAT3 inhibition diminished the effects of G-CSF on decidualization marker expression and apoptosis suppression. Furthermore, it was demonstrated that G-CSF increased Hoxa10 expression in a STAT3-dependent manner. Silencing Hoxa10 abrogated the effects of G-CSF on promoting decidualization.</p><p><strong>Conclusion: </strong>G-CSF enhances decidualization of endometrial stromal cells via STAT3/HOXA10 axis activation. These findings suggest that optimal G-CSF delivery strategies could improve endometrial receptivity in RIF patients.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\" \",\"pages\":\"e2400279\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/adbi.202400279\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400279","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Granulocyte Colony Stimulating Factor Enhances Decidualization Process of Endometrial Stromal Cells Through STAT3/HOXA10 Axis.

Background: Recurrent implantation failure (RIF) is characterized by the repeated failure of implantation, often linked to impaired endometrial receptivity. This study investigates how granulocyte colony-stimulating factor (G-CSF) promotes endometrial stromal cell decidualization.

Methods: THESCs (human telomerase reverse transcriptase-immortalized endometrial stromal cells) were used as an in vitro cell model to induce decidualization. The effects of G-CSF on the expression of decidualization genes and apoptosis during decidualization were examined. Additionally, a chemical inhibitor of signal transducer and activator of transcription 3 (STAT3) and the small interfering RNA (siRNA) targeting Homeobox A10 (Hoxa10) were employed to explore the involvement of the STAT3/HOXA10 axis in the action of G-CSF.

Results: G-CSF promoted decidualization markers expression and suppressed apoptosis in THESCs Treatment with G-CSF enhanced STAT3 activation during decidualization induction. STAT3 inhibition diminished the effects of G-CSF on decidualization marker expression and apoptosis suppression. Furthermore, it was demonstrated that G-CSF increased Hoxa10 expression in a STAT3-dependent manner. Silencing Hoxa10 abrogated the effects of G-CSF on promoting decidualization.

Conclusion: G-CSF enhances decidualization of endometrial stromal cells via STAT3/HOXA10 axis activation. These findings suggest that optimal G-CSF delivery strategies could improve endometrial receptivity in RIF patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信