Andrea Belluati, Adrian Bloch, Kaloian Koynov, Mariana Müller Nieva, Mohadeseh Bagherabadi, Annette Andrieu-Brunsen, Harald Kolmar, Nico Bruns
{"title":"生物 PISA 中囊泡特性的表征和优化:从粒度分布到组装后装载。","authors":"Andrea Belluati, Adrian Bloch, Kaloian Koynov, Mariana Müller Nieva, Mohadeseh Bagherabadi, Annette Andrieu-Brunsen, Harald Kolmar, Nico Bruns","doi":"10.1002/adbi.202400483","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS). Additionally, the feasibility of loading macromolecules into pre-formed vesicles is demonstrated using electroporation, and a fluorescent protein as well as enzymes for a cascade reaction were sucesfully incorporated into the fully assembled polymersomes. These findings provide a foundation for developing enzyme-synthesized polymeric vesicles with controlled morphologies for various applications, e.g., in synthetic biology.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400483"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading.\",\"authors\":\"Andrea Belluati, Adrian Bloch, Kaloian Koynov, Mariana Müller Nieva, Mohadeseh Bagherabadi, Annette Andrieu-Brunsen, Harald Kolmar, Nico Bruns\",\"doi\":\"10.1002/adbi.202400483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS). Additionally, the feasibility of loading macromolecules into pre-formed vesicles is demonstrated using electroporation, and a fluorescent protein as well as enzymes for a cascade reaction were sucesfully incorporated into the fully assembled polymersomes. These findings provide a foundation for developing enzyme-synthesized polymeric vesicles with controlled morphologies for various applications, e.g., in synthetic biology.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\" \",\"pages\":\"e2400483\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/adbi.202400483\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400483","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading.
This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS). Additionally, the feasibility of loading macromolecules into pre-formed vesicles is demonstrated using electroporation, and a fluorescent protein as well as enzymes for a cascade reaction were sucesfully incorporated into the fully assembled polymersomes. These findings provide a foundation for developing enzyme-synthesized polymeric vesicles with controlled morphologies for various applications, e.g., in synthetic biology.