用可回收的自愈纤维打印出不受约束、可自我重构、自我输出的软体机器人。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yidan Gao, Wei Tang, Yiding Zhong, Xinyu Guo, Kecheng Qin, Yonghao Wang, Elena Yu Kramarenko, Jun Zou
{"title":"用可回收的自愈纤维打印出不受约束、可自我重构、自我输出的软体机器人。","authors":"Yidan Gao, Wei Tang, Yiding Zhong, Xinyu Guo, Kecheng Qin, Yonghao Wang, Elena Yu Kramarenko, Jun Zou","doi":"10.1002/advs.202410167","DOIUrl":null,"url":null,"abstract":"<p><p>Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed. The soft fibers can achieve wireless self-healing and reversible bonding of the fibers by eddy current heating and can be actuated by magnetic fields. Moreover, the soft fibers are recyclable and printable. Building on this material foundation, an integrated material-structure-actuation printing strategy using soft fibers for the design and fabrication of soft robots are reported. The robots printed by this strategy can achieve their untethered motions and wireless self-healing. Soft gripper, soft crawling robot, and soft multi-legged robot, are then fabricated which demonstrates the self-healing, self-reconfigurable, self-amputating, and sustainable performances of soft robots so as to adapt to different environments and tasks. This integrated material-structure-actuation printing strategy using soft fibers is universal, easy to implement, and mass-manufactured, opening a door for sustainable, eco-friendly, untethered, self-reconfigurable, self-amputating soft robots.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410167"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers.\",\"authors\":\"Yidan Gao, Wei Tang, Yiding Zhong, Xinyu Guo, Kecheng Qin, Yonghao Wang, Elena Yu Kramarenko, Jun Zou\",\"doi\":\"10.1002/advs.202410167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed. The soft fibers can achieve wireless self-healing and reversible bonding of the fibers by eddy current heating and can be actuated by magnetic fields. Moreover, the soft fibers are recyclable and printable. Building on this material foundation, an integrated material-structure-actuation printing strategy using soft fibers for the design and fabrication of soft robots are reported. The robots printed by this strategy can achieve their untethered motions and wireless self-healing. Soft gripper, soft crawling robot, and soft multi-legged robot, are then fabricated which demonstrates the self-healing, self-reconfigurable, self-amputating, and sustainable performances of soft robots so as to adapt to different environments and tasks. This integrated material-structure-actuation printing strategy using soft fibers is universal, easy to implement, and mass-manufactured, opening a door for sustainable, eco-friendly, untethered, self-reconfigurable, self-amputating soft robots.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2410167\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202410167\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers.

Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed. The soft fibers can achieve wireless self-healing and reversible bonding of the fibers by eddy current heating and can be actuated by magnetic fields. Moreover, the soft fibers are recyclable and printable. Building on this material foundation, an integrated material-structure-actuation printing strategy using soft fibers for the design and fabrication of soft robots are reported. The robots printed by this strategy can achieve their untethered motions and wireless self-healing. Soft gripper, soft crawling robot, and soft multi-legged robot, are then fabricated which demonstrates the self-healing, self-reconfigurable, self-amputating, and sustainable performances of soft robots so as to adapt to different environments and tasks. This integrated material-structure-actuation printing strategy using soft fibers is universal, easy to implement, and mass-manufactured, opening a door for sustainable, eco-friendly, untethered, self-reconfigurable, self-amputating soft robots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信