Ramona Marasco, Maria J. Mosqueira, Kholoud A. Seferji, Sarah M. Al Romaih, Grégoire Michoud, Jian Xu, Cristina Bez, Tatiana Castillo Hernandez, Vittorio Venturi, Ikram Blilou, Daniele Daffonchio
{"title":"荒漠植物促生长假单胞菌调节植物生长素稳态,减轻盐胁迫。","authors":"Ramona Marasco, Maria J. Mosqueira, Kholoud A. Seferji, Sarah M. Al Romaih, Grégoire Michoud, Jian Xu, Cristina Bez, Tatiana Castillo Hernandez, Vittorio Venturi, Ikram Blilou, Daniele Daffonchio","doi":"10.1111/1751-7915.70043","DOIUrl":null,"url":null,"abstract":"<p>By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two <i>Pseudomonas</i> spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in <i>Arabidopsis</i>, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70043","citationCount":"0","resultStr":"{\"title\":\"Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress\",\"authors\":\"Ramona Marasco, Maria J. Mosqueira, Kholoud A. Seferji, Sarah M. Al Romaih, Grégoire Michoud, Jian Xu, Cristina Bez, Tatiana Castillo Hernandez, Vittorio Venturi, Ikram Blilou, Daniele Daffonchio\",\"doi\":\"10.1111/1751-7915.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two <i>Pseudomonas</i> spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in <i>Arabidopsis</i>, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 12\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70043\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes