Peining Cai, Qi Li, Shuhui Wang, Liju Tan, Jiangtao Wang
{"title":"铜和二氧化硅纳米粒子的单一和二元混合物暴露于 Nitzschia closterium f. minutissima 的细胞毒性。","authors":"Peining Cai, Qi Li, Shuhui Wang, Liju Tan, Jiangtao Wang","doi":"10.1016/j.aquatox.2024.107211","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of nanoparticles are produced and enter the aquatic environment, where they interact with each other, posing a potential threat to aquatic organisms. The toxicity of two types of nanoparticles (nCu and nSiO<sub>2</sub>) on Nitzschia closterium f. minutissima (N. closterium f. minutissima) was investigated in this study by examining changes in microalgal cell density, instantaneous fluorescence rate (Ft), and a range of antioxidant parameters in the cells. It was found that both nCu and nSiO<sub>2</sub> showed time- and concentration-dependent toxic effects on N. closterium f. minutissima. nSiO<sub>2</sub> could promote microalgae growth at low concentrations by providing Si, an essential element for the synthesis of siliceous shells. As the exposure time increased, both the growth and photosynthetic efficiency of the microalgae were inhibited. Nanoparticles also produced oxidative stress and caused lipid peroxidation in the microalgae. In the meantime, SOD and CAT activity were altered to protect cells from oxidative damage. Inverted biomicroscopy images showed that the microalgae enhanced their cell size to adapt to the environmental stress as exposed to 1 mg/L nCu. Scanning electron microscope (SEM) images showed that 10 mg/L nSiO<sub>2</sub> could adsorb nCu and reduce the toxic effect of nCu on the microalgae, while 30 mg/L nSiO<sub>2</sub> caused mechanical damage to microalgal cells and accelerated the internalization of nanoparticles and Cu<sup>2+</sup> in the cells.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107211"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity of single and binary mixtures of copper and silica nanoparticles exposed to Nitzschia closterium f. minutissima.\",\"authors\":\"Peining Cai, Qi Li, Shuhui Wang, Liju Tan, Jiangtao Wang\",\"doi\":\"10.1016/j.aquatox.2024.107211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large number of nanoparticles are produced and enter the aquatic environment, where they interact with each other, posing a potential threat to aquatic organisms. The toxicity of two types of nanoparticles (nCu and nSiO<sub>2</sub>) on Nitzschia closterium f. minutissima (N. closterium f. minutissima) was investigated in this study by examining changes in microalgal cell density, instantaneous fluorescence rate (Ft), and a range of antioxidant parameters in the cells. It was found that both nCu and nSiO<sub>2</sub> showed time- and concentration-dependent toxic effects on N. closterium f. minutissima. nSiO<sub>2</sub> could promote microalgae growth at low concentrations by providing Si, an essential element for the synthesis of siliceous shells. As the exposure time increased, both the growth and photosynthetic efficiency of the microalgae were inhibited. Nanoparticles also produced oxidative stress and caused lipid peroxidation in the microalgae. In the meantime, SOD and CAT activity were altered to protect cells from oxidative damage. Inverted biomicroscopy images showed that the microalgae enhanced their cell size to adapt to the environmental stress as exposed to 1 mg/L nCu. Scanning electron microscope (SEM) images showed that 10 mg/L nSiO<sub>2</sub> could adsorb nCu and reduce the toxic effect of nCu on the microalgae, while 30 mg/L nSiO<sub>2</sub> caused mechanical damage to microalgal cells and accelerated the internalization of nanoparticles and Cu<sup>2+</sup> in the cells.</p>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"279 \",\"pages\":\"107211\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aquatox.2024.107211\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2024.107211","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Cytotoxicity of single and binary mixtures of copper and silica nanoparticles exposed to Nitzschia closterium f. minutissima.
A large number of nanoparticles are produced and enter the aquatic environment, where they interact with each other, posing a potential threat to aquatic organisms. The toxicity of two types of nanoparticles (nCu and nSiO2) on Nitzschia closterium f. minutissima (N. closterium f. minutissima) was investigated in this study by examining changes in microalgal cell density, instantaneous fluorescence rate (Ft), and a range of antioxidant parameters in the cells. It was found that both nCu and nSiO2 showed time- and concentration-dependent toxic effects on N. closterium f. minutissima. nSiO2 could promote microalgae growth at low concentrations by providing Si, an essential element for the synthesis of siliceous shells. As the exposure time increased, both the growth and photosynthetic efficiency of the microalgae were inhibited. Nanoparticles also produced oxidative stress and caused lipid peroxidation in the microalgae. In the meantime, SOD and CAT activity were altered to protect cells from oxidative damage. Inverted biomicroscopy images showed that the microalgae enhanced their cell size to adapt to the environmental stress as exposed to 1 mg/L nCu. Scanning electron microscope (SEM) images showed that 10 mg/L nSiO2 could adsorb nCu and reduce the toxic effect of nCu on the microalgae, while 30 mg/L nSiO2 caused mechanical damage to microalgal cells and accelerated the internalization of nanoparticles and Cu2+ in the cells.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.