{"title":"基于 LOX-1 的设备表面组装层可促进内皮修复并减少原位介入斑块的并发症。","authors":"Sainan Liu, Jinquan Huang, Jiayan Luo, Xiaowa Gao, Siqi Song, Qihao Bian, Yajun Weng, Junying Chen","doi":"10.1002/adhm.202403060","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403060"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque.\",\"authors\":\"Sainan Liu, Jinquan Huang, Jiayan Luo, Xiaowa Gao, Siqi Song, Qihao Bian, Yajun Weng, Junying Chen\",\"doi\":\"10.1002/adhm.202403060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403060\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403060\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque.
Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.