{"title":"用于晶界工程的矢量衬底设计:提高 LaNiO3 中氧进化反应的性能。","authors":"Huan Liu, Yue Han, Jinrui Guo, Wenqi Gao, Jiaqing Wang, Bin He, Zhihong Wang, Weiming Lü","doi":"10.1039/d4mh01565g","DOIUrl":null,"url":null,"abstract":"<p><p>The realization and subsequent control of emerging structural and electronic phases in solid materials has significantly enhanced their functionalities, thereby benefiting both fundamental research and practical applications. The grain boundary (GB), as a transitional region within the crystal lattice, exhibits atomic shifts and distinct energy profiles. These unique characteristics offer a promising avenue for the discovery of advanced active catalytic phases for carbon, oxygen, hydrogen, and nitrogen evolution/reduction reactions. However, the challenge lies in isolating and controlling the quantity of grain boundaries in conventional catalysts, which hinders the identification of their functional attributes. In this study, we successfully engineered the (001)/(110), (001)/(111), and (110)/(111) GBs in LaNiO<sub>3</sub> (LNO) using a vector substrate design approach. Subsequent evaluation of these GBs in the oxygen evolution reaction (OER) revealed that LNO (110)/(111) exhibited the fastest surface reconstruction into Ni oxyhydroxide and the most superior OER performance, achieving 2.36 mA cm<sup>-2</sup> at <i>η</i> = 400 mV. This outstanding performance is attributed to its strongest Ni-O covalency and the proximity of the O 2p-band center to the Fermi level. This research aims to address the challenges associated with isolating and controlling GBs for optimized OER performance, while also providing comprehensive insights into the relationship between GBs and surface reconstruction behaviors.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector substrate design for grain boundary engineering: boosting oxygen evolution reaction performance in LaNiO<sub>3</sub>.\",\"authors\":\"Huan Liu, Yue Han, Jinrui Guo, Wenqi Gao, Jiaqing Wang, Bin He, Zhihong Wang, Weiming Lü\",\"doi\":\"10.1039/d4mh01565g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The realization and subsequent control of emerging structural and electronic phases in solid materials has significantly enhanced their functionalities, thereby benefiting both fundamental research and practical applications. The grain boundary (GB), as a transitional region within the crystal lattice, exhibits atomic shifts and distinct energy profiles. These unique characteristics offer a promising avenue for the discovery of advanced active catalytic phases for carbon, oxygen, hydrogen, and nitrogen evolution/reduction reactions. However, the challenge lies in isolating and controlling the quantity of grain boundaries in conventional catalysts, which hinders the identification of their functional attributes. In this study, we successfully engineered the (001)/(110), (001)/(111), and (110)/(111) GBs in LaNiO<sub>3</sub> (LNO) using a vector substrate design approach. Subsequent evaluation of these GBs in the oxygen evolution reaction (OER) revealed that LNO (110)/(111) exhibited the fastest surface reconstruction into Ni oxyhydroxide and the most superior OER performance, achieving 2.36 mA cm<sup>-2</sup> at <i>η</i> = 400 mV. This outstanding performance is attributed to its strongest Ni-O covalency and the proximity of the O 2p-band center to the Fermi level. This research aims to address the challenges associated with isolating and controlling GBs for optimized OER performance, while also providing comprehensive insights into the relationship between GBs and surface reconstruction behaviors.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01565g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01565g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Vector substrate design for grain boundary engineering: boosting oxygen evolution reaction performance in LaNiO3.
The realization and subsequent control of emerging structural and electronic phases in solid materials has significantly enhanced their functionalities, thereby benefiting both fundamental research and practical applications. The grain boundary (GB), as a transitional region within the crystal lattice, exhibits atomic shifts and distinct energy profiles. These unique characteristics offer a promising avenue for the discovery of advanced active catalytic phases for carbon, oxygen, hydrogen, and nitrogen evolution/reduction reactions. However, the challenge lies in isolating and controlling the quantity of grain boundaries in conventional catalysts, which hinders the identification of their functional attributes. In this study, we successfully engineered the (001)/(110), (001)/(111), and (110)/(111) GBs in LaNiO3 (LNO) using a vector substrate design approach. Subsequent evaluation of these GBs in the oxygen evolution reaction (OER) revealed that LNO (110)/(111) exhibited the fastest surface reconstruction into Ni oxyhydroxide and the most superior OER performance, achieving 2.36 mA cm-2 at η = 400 mV. This outstanding performance is attributed to its strongest Ni-O covalency and the proximity of the O 2p-band center to the Fermi level. This research aims to address the challenges associated with isolating and controlling GBs for optimized OER performance, while also providing comprehensive insights into the relationship between GBs and surface reconstruction behaviors.