Miaomiao Ji, Yukai Liu, Zheng Zhang, Rui Xu, Fanyun Pan, Ya Zhang, Rouyu Su, Minghui Lu, Xiujuan Zhang, Guanghui Wang
{"title":"封装微气泡的 3D 打印声学元表面,用于频率选择性操纵。","authors":"Miaomiao Ji, Yukai Liu, Zheng Zhang, Rui Xu, Fanyun Pan, Ya Zhang, Rouyu Su, Minghui Lu, Xiujuan Zhang, Guanghui Wang","doi":"10.1039/d4lc00890a","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size. The resonances amplify vibrational amplitude and generate localized turbulence, enabling selective, non-invasive, and high-precision manipulation of microsized objects. However, conventional bubble formation relies on the shear force of the liquid flow and bubble surface tension, facing challenges of instability and random vibration that can impair manipulation precision and performance. To address these issues, we propose a coupled vibration structure with 3D-printed circular microsized air holes encapsulated by a PDMS film. These airholes act as artificial micro-air-bubbles, with their expansion and contraction stabilized by acoustic hard boundaries. The PDMS film further regulates vibration modes through the interaction between air movement and the film's vibration, eliminating randomness. Compared to conventional air-bubbles held by surface tension, these artificial air-bubbles are mechanically stable, allowing for enhanced gas volume changes and stronger forces for object manipulation. We experimentally confirm the stable vibration modes and their frequency-dependent behavior using laser Doppler vibrometry. Precise aggregation, rotation, and separation of micro-objects are demonstrated by adjusting the film's vibration mode. Furthermore, we propose a metasurface design featuring a multi-size microbubble array for frequency-selective manipulation, enabling flexible control of sample trajectory by changing the exciting frequency of an embedded piezoelectric transducer. Our low-frequency acoustic metasurface device offers a versatile, cost-effective solution for drug screening and automated sample handling.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed acoustic metasurface with encapsulated micro-air-bubbles for frequency-selective manipulation.\",\"authors\":\"Miaomiao Ji, Yukai Liu, Zheng Zhang, Rui Xu, Fanyun Pan, Ya Zhang, Rouyu Su, Minghui Lu, Xiujuan Zhang, Guanghui Wang\",\"doi\":\"10.1039/d4lc00890a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size. The resonances amplify vibrational amplitude and generate localized turbulence, enabling selective, non-invasive, and high-precision manipulation of microsized objects. However, conventional bubble formation relies on the shear force of the liquid flow and bubble surface tension, facing challenges of instability and random vibration that can impair manipulation precision and performance. To address these issues, we propose a coupled vibration structure with 3D-printed circular microsized air holes encapsulated by a PDMS film. These airholes act as artificial micro-air-bubbles, with their expansion and contraction stabilized by acoustic hard boundaries. The PDMS film further regulates vibration modes through the interaction between air movement and the film's vibration, eliminating randomness. Compared to conventional air-bubbles held by surface tension, these artificial air-bubbles are mechanically stable, allowing for enhanced gas volume changes and stronger forces for object manipulation. We experimentally confirm the stable vibration modes and their frequency-dependent behavior using laser Doppler vibrometry. Precise aggregation, rotation, and separation of micro-objects are demonstrated by adjusting the film's vibration mode. Furthermore, we propose a metasurface design featuring a multi-size microbubble array for frequency-selective manipulation, enabling flexible control of sample trajectory by changing the exciting frequency of an embedded piezoelectric transducer. Our low-frequency acoustic metasurface device offers a versatile, cost-effective solution for drug screening and automated sample handling.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00890a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00890a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
3D-printed acoustic metasurface with encapsulated micro-air-bubbles for frequency-selective manipulation.
Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size. The resonances amplify vibrational amplitude and generate localized turbulence, enabling selective, non-invasive, and high-precision manipulation of microsized objects. However, conventional bubble formation relies on the shear force of the liquid flow and bubble surface tension, facing challenges of instability and random vibration that can impair manipulation precision and performance. To address these issues, we propose a coupled vibration structure with 3D-printed circular microsized air holes encapsulated by a PDMS film. These airholes act as artificial micro-air-bubbles, with their expansion and contraction stabilized by acoustic hard boundaries. The PDMS film further regulates vibration modes through the interaction between air movement and the film's vibration, eliminating randomness. Compared to conventional air-bubbles held by surface tension, these artificial air-bubbles are mechanically stable, allowing for enhanced gas volume changes and stronger forces for object manipulation. We experimentally confirm the stable vibration modes and their frequency-dependent behavior using laser Doppler vibrometry. Precise aggregation, rotation, and separation of micro-objects are demonstrated by adjusting the film's vibration mode. Furthermore, we propose a metasurface design featuring a multi-size microbubble array for frequency-selective manipulation, enabling flexible control of sample trajectory by changing the exciting frequency of an embedded piezoelectric transducer. Our low-frequency acoustic metasurface device offers a versatile, cost-effective solution for drug screening and automated sample handling.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.