混合聚合物网络阴极使能的可溶-无多硫化物锂硫电池

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Meng Liao, Yaobin Xu, Muhammad Mominur Rahman, Sha Tan, Daiwei Wang, Ke Wang, Naveen K. Dandu, Qian Lu, Guoxing Li, Linh Le, Rong Kou, Heng Jiang, Au Nguyen, Pei Shi, Lei Ye, Anh T. Ngo, Enyuan Hu, Chongmin Wang, Donghai Wang
{"title":"混合聚合物网络阴极使能的可溶-无多硫化物锂硫电池","authors":"Meng Liao, Yaobin Xu, Muhammad Mominur Rahman, Sha Tan, Daiwei Wang, Ke Wang, Naveen K. Dandu, Qian Lu, Guoxing Li, Linh Le, Rong Kou, Heng Jiang, Au Nguyen, Pei Shi, Lei Ye, Anh T. Ngo, Enyuan Hu, Chongmin Wang, Donghai Wang","doi":"10.1038/s41893-024-01453-0","DOIUrl":null,"url":null,"abstract":"Among the emerging ‘beyond lithium-ion’ technologies for maximized sustainability, lithium–sulfur (Li–S) is a favoured chemistry because of its exceptional energy density from the conversion of sulfur, an element in abundant supply. However, the dissolution of several intermediate polysulfides formed during conversion leads to rapid performance degradation over cycling. Here we address this issue by sulfurizing a hybrid polymer network with polyphosphazene and carbon as a cathode for Li–S batteries. With rich sites to re-bond and adsorb dissociative sulfur species, this hybrid polymer network circumvents the formation of soluble polysulfides and enables a unique, reversible inserting conversion reaction. Thus, our cathode delivers both high capacity (~900 mAh g−1cathode) and excellent cycling stability in Li–S coin cells, with a pouch cell demonstration of projected energy density of ~300 Wh kg−1 and 84.9% capacity retention after 150 cycles. The strategy can be extended to other cost-effective, recyclable polymers, advancing sulfur-based batteries towards practical energy storage application. The combination of high energy density and sustainability makes the lithium–sulfur battery a technology of growing importance. Here the authors show a polymeric cathode design that enables impressive performance in practical pouch cells.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1709-1718"},"PeriodicalIF":25.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium–sulfur batteries\",\"authors\":\"Meng Liao, Yaobin Xu, Muhammad Mominur Rahman, Sha Tan, Daiwei Wang, Ke Wang, Naveen K. Dandu, Qian Lu, Guoxing Li, Linh Le, Rong Kou, Heng Jiang, Au Nguyen, Pei Shi, Lei Ye, Anh T. Ngo, Enyuan Hu, Chongmin Wang, Donghai Wang\",\"doi\":\"10.1038/s41893-024-01453-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the emerging ‘beyond lithium-ion’ technologies for maximized sustainability, lithium–sulfur (Li–S) is a favoured chemistry because of its exceptional energy density from the conversion of sulfur, an element in abundant supply. However, the dissolution of several intermediate polysulfides formed during conversion leads to rapid performance degradation over cycling. Here we address this issue by sulfurizing a hybrid polymer network with polyphosphazene and carbon as a cathode for Li–S batteries. With rich sites to re-bond and adsorb dissociative sulfur species, this hybrid polymer network circumvents the formation of soluble polysulfides and enables a unique, reversible inserting conversion reaction. Thus, our cathode delivers both high capacity (~900 mAh g−1cathode) and excellent cycling stability in Li–S coin cells, with a pouch cell demonstration of projected energy density of ~300 Wh kg−1 and 84.9% capacity retention after 150 cycles. The strategy can be extended to other cost-effective, recyclable polymers, advancing sulfur-based batteries towards practical energy storage application. The combination of high energy density and sustainability makes the lithium–sulfur battery a technology of growing importance. Here the authors show a polymeric cathode design that enables impressive performance in practical pouch cells.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 12\",\"pages\":\"1709-1718\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01453-0\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01453-0","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在新兴的“超越锂离子”技术中,为了最大限度地实现可持续性,锂硫(Li-S)是一种受欢迎的化学物质,因为它从硫的转化中获得了特殊的能量密度,硫是一种供应充足的元素。然而,在转化过程中形成的几种中间多硫化物的溶解导致循环过程中性能的快速下降。在这里,我们通过硫化聚磷腈和碳的混合聚合物网络作为锂- s电池的阴极来解决这个问题。由于具有丰富的重键和吸附解离硫的位点,这种杂化聚合物网络避免了可溶性多硫化物的形成,并实现了独特的可逆插入转化反应。因此,我们的阴极在Li-S硬币电池中提供高容量(~900 mAh g - 1阴极)和出色的循环稳定性,袋状电池的预计能量密度为~300 Wh kg - 1,循环150次后容量保持率为84.9%。该策略可以扩展到其他具有成本效益,可回收的聚合物,推进硫基电池向实际储能应用。高能量密度和可持续性的结合使得锂硫电池成为一项越来越重要的技术。在这里,作者展示了一种聚合物阴极设计,可以在实用的袋状电池中实现令人印象深刻的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium–sulfur batteries

Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium–sulfur batteries
Among the emerging ‘beyond lithium-ion’ technologies for maximized sustainability, lithium–sulfur (Li–S) is a favoured chemistry because of its exceptional energy density from the conversion of sulfur, an element in abundant supply. However, the dissolution of several intermediate polysulfides formed during conversion leads to rapid performance degradation over cycling. Here we address this issue by sulfurizing a hybrid polymer network with polyphosphazene and carbon as a cathode for Li–S batteries. With rich sites to re-bond and adsorb dissociative sulfur species, this hybrid polymer network circumvents the formation of soluble polysulfides and enables a unique, reversible inserting conversion reaction. Thus, our cathode delivers both high capacity (~900 mAh g−1cathode) and excellent cycling stability in Li–S coin cells, with a pouch cell demonstration of projected energy density of ~300 Wh kg−1 and 84.9% capacity retention after 150 cycles. The strategy can be extended to other cost-effective, recyclable polymers, advancing sulfur-based batteries towards practical energy storage application. The combination of high energy density and sustainability makes the lithium–sulfur battery a technology of growing importance. Here the authors show a polymeric cathode design that enables impressive performance in practical pouch cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信