反铁磁MnBi2Te4薄膜的室温非线性输运和微波整流

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shanshan Liu, Rhonald Burgos, Enze Zhang, Naizhou Wang, Xiao-Bin Qiang, Chuanzhao Li, Qihan Zhang, Z. Z. Du, Rui Zheng, Jingsheng Chen, Qing-Hua Xu, Kai Leng, Weibo Gao, Faxian Xiu, Dimitrie Culcer, Kian Ping Loh
{"title":"反铁磁MnBi2Te4薄膜的室温非线性输运和微波整流","authors":"Shanshan Liu, Rhonald Burgos, Enze Zhang, Naizhou Wang, Xiao-Bin Qiang, Chuanzhao Li, Qihan Zhang, Z. Z. Du, Rui Zheng, Jingsheng Chen, Qing-Hua Xu, Kai Leng, Weibo Gao, Faxian Xiu, Dimitrie Culcer, Kian Ping Loh","doi":"10.1038/s42005-024-01897-y","DOIUrl":null,"url":null,"abstract":"The discovery of the nonlinear Hall effect provides an avenue for studying the interplay among symmetry, topology, and phase transitions, with potential applications in signal doubling and high-frequency rectification. However, practical applications require devices fabricated on large area thin film as well as room-temperature operation. Here, we demonstrate robust room-temperature nonlinear transverse response and microwave rectification in MnBi2Te4 films grown by molecular beam epitaxy. We observe multiple sign-reversals in the nonlinear response by tuning the chemical potential. Through theoretical analysis, we identify skew scattering and side jump, arising from extrinsic spin-orbit scattering, as the main mechanisms underlying the observed nonlinear signals. Furthermore, we demonstrate radio frequency (RF) rectification in the range of 1–8 gigahertz at 300 K. These findings not only enhance our understanding of the relationship between nonlinear response and magnetism, but also expand the potential applications as energy harvesters and detectors in high-frequency scenarios. The nonlinear Hall effect enables studies of symmetry and topology with potential in high-frequency devices, but practical applications demand room temperature operation. The authors report robust room temperature nonlinear transverse responses and microwave rectification (1–8 GHz) in MnBi2Te4 thin films, driven by extrinsic spin-orbit scattering.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01897-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Room-temperature nonlinear transport and microwave rectification in antiferromagnetic MnBi2Te4 films\",\"authors\":\"Shanshan Liu, Rhonald Burgos, Enze Zhang, Naizhou Wang, Xiao-Bin Qiang, Chuanzhao Li, Qihan Zhang, Z. Z. Du, Rui Zheng, Jingsheng Chen, Qing-Hua Xu, Kai Leng, Weibo Gao, Faxian Xiu, Dimitrie Culcer, Kian Ping Loh\",\"doi\":\"10.1038/s42005-024-01897-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of the nonlinear Hall effect provides an avenue for studying the interplay among symmetry, topology, and phase transitions, with potential applications in signal doubling and high-frequency rectification. However, practical applications require devices fabricated on large area thin film as well as room-temperature operation. Here, we demonstrate robust room-temperature nonlinear transverse response and microwave rectification in MnBi2Te4 films grown by molecular beam epitaxy. We observe multiple sign-reversals in the nonlinear response by tuning the chemical potential. Through theoretical analysis, we identify skew scattering and side jump, arising from extrinsic spin-orbit scattering, as the main mechanisms underlying the observed nonlinear signals. Furthermore, we demonstrate radio frequency (RF) rectification in the range of 1–8 gigahertz at 300 K. These findings not only enhance our understanding of the relationship between nonlinear response and magnetism, but also expand the potential applications as energy harvesters and detectors in high-frequency scenarios. The nonlinear Hall effect enables studies of symmetry and topology with potential in high-frequency devices, but practical applications demand room temperature operation. The authors report robust room temperature nonlinear transverse responses and microwave rectification (1–8 GHz) in MnBi2Te4 thin films, driven by extrinsic spin-orbit scattering.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01897-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01897-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01897-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非线性霍尔效应的发现为研究对称、拓扑和相变之间的相互作用提供了一条途径,在信号加倍和高频整流中具有潜在的应用前景。然而,实际应用需要在大面积薄膜上制造器件以及室温操作。在这里,我们证明了分子束外延生长的MnBi2Te4薄膜具有鲁棒的室温非线性横向响应和微波整流。通过调整化学势,我们观察到非线性响应中的多重反转。通过理论分析,我们确定了由外部自旋轨道散射引起的倾斜散射和侧跃是观测到的非线性信号的主要机制。此外,我们还演示了300 K下1-8千兆赫的射频整流。这些发现不仅增强了我们对非线性响应与磁性之间关系的理解,而且扩大了在高频场景中作为能量收集器和探测器的潜在应用。非线性霍尔效应使得研究高频器件的对称性和拓扑结构具有电位,但实际应用需要室温操作。作者报道了MnBi2Te4薄膜在外部自旋轨道散射驱动下的室温非线性横向响应和微波整流(1-8 GHz)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-temperature nonlinear transport and microwave rectification in antiferromagnetic MnBi2Te4 films

Room-temperature nonlinear transport and microwave rectification in antiferromagnetic MnBi2Te4 films
The discovery of the nonlinear Hall effect provides an avenue for studying the interplay among symmetry, topology, and phase transitions, with potential applications in signal doubling and high-frequency rectification. However, practical applications require devices fabricated on large area thin film as well as room-temperature operation. Here, we demonstrate robust room-temperature nonlinear transverse response and microwave rectification in MnBi2Te4 films grown by molecular beam epitaxy. We observe multiple sign-reversals in the nonlinear response by tuning the chemical potential. Through theoretical analysis, we identify skew scattering and side jump, arising from extrinsic spin-orbit scattering, as the main mechanisms underlying the observed nonlinear signals. Furthermore, we demonstrate radio frequency (RF) rectification in the range of 1–8 gigahertz at 300 K. These findings not only enhance our understanding of the relationship between nonlinear response and magnetism, but also expand the potential applications as energy harvesters and detectors in high-frequency scenarios. The nonlinear Hall effect enables studies of symmetry and topology with potential in high-frequency devices, but practical applications demand room temperature operation. The authors report robust room temperature nonlinear transverse responses and microwave rectification (1–8 GHz) in MnBi2Te4 thin films, driven by extrinsic spin-orbit scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信