在XCT模拟授权的人工智能中,通过形状变化检测大米产品的降解

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Miroslav Yosifov, Thomas Lang, Virginia Florian, Stefan Gerth, Jan De Beenhouwer, Jan Sijbers, Johann Kastner, Christoph Heinzl
{"title":"在XCT模拟授权的人工智能中,通过形状变化检测大米产品的降解","authors":"Miroslav Yosifov,&nbsp;Thomas Lang,&nbsp;Virginia Florian,&nbsp;Stefan Gerth,&nbsp;Jan De Beenhouwer,&nbsp;Jan Sijbers,&nbsp;Johann Kastner,&nbsp;Christoph Heinzl","doi":"10.1007/s10921-024-01147-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the process of generating artificial training data for the detection and classification of defective areas in X-ray computed tomography (XCT) scans in the agricultural domain using AI techniques. It aims to determine the minimum detectability limit for such defects through analyses regarding the Probability of Detection based on analytic XCT simulations. For this purpose, the presented methodology introduces randomized shape variations in surface models used as descriptors for specimens in XCT simulations for generating virtual XCT data. Specifically, the agricultural sector is targeted in this work in terms of analyzing common degradation or defective areas in rice products. This is of special interest due to the huge biological genotypic and phenotypic variations occurring in nature. The proposed method is demonstrated on the application of analyzing rice grains for common defects (chalky and pore areas).</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01147-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI\",\"authors\":\"Miroslav Yosifov,&nbsp;Thomas Lang,&nbsp;Virginia Florian,&nbsp;Stefan Gerth,&nbsp;Jan De Beenhouwer,&nbsp;Jan Sijbers,&nbsp;Johann Kastner,&nbsp;Christoph Heinzl\",\"doi\":\"10.1007/s10921-024-01147-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the process of generating artificial training data for the detection and classification of defective areas in X-ray computed tomography (XCT) scans in the agricultural domain using AI techniques. It aims to determine the minimum detectability limit for such defects through analyses regarding the Probability of Detection based on analytic XCT simulations. For this purpose, the presented methodology introduces randomized shape variations in surface models used as descriptors for specimens in XCT simulations for generating virtual XCT data. Specifically, the agricultural sector is targeted in this work in terms of analyzing common degradation or defective areas in rice products. This is of special interest due to the huge biological genotypic and phenotypic variations occurring in nature. The proposed method is demonstrated on the application of analyzing rice grains for common defects (chalky and pore areas).</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-024-01147-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01147-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01147-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了使用人工智能技术在农业领域生成用于检测和分类x射线计算机断层扫描(XCT)缺陷区域的人工训练数据的过程。通过基于解析式XCT模拟的检测概率分析,确定此类缺陷的最小可检测极限。为此,所提出的方法在表面模型中引入随机形状变化,用作XCT模拟中样本的描述符,以生成虚拟XCT数据。具体来说,农业部门是这项工作的目标,分析稻米产品中常见的退化或缺陷区域。由于自然界中发生的巨大的生物基因型和表型变异,这是特别有趣的。通过对稻谷中常见缺陷(白垩质和孔隙区)的分析,验证了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI

This research explores the process of generating artificial training data for the detection and classification of defective areas in X-ray computed tomography (XCT) scans in the agricultural domain using AI techniques. It aims to determine the minimum detectability limit for such defects through analyses regarding the Probability of Detection based on analytic XCT simulations. For this purpose, the presented methodology introduces randomized shape variations in surface models used as descriptors for specimens in XCT simulations for generating virtual XCT data. Specifically, the agricultural sector is targeted in this work in terms of analyzing common degradation or defective areas in rice products. This is of special interest due to the huge biological genotypic and phenotypic variations occurring in nature. The proposed method is demonstrated on the application of analyzing rice grains for common defects (chalky and pore areas).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信