{"title":"二维多重连接有界域中具有非均质滑动边界条件的稳态纳维-斯托克斯方程的存在定理","authors":"Giovanni P. Galdi, Tatsuki Yamamoto","doi":"10.1007/s00021-024-00907-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the nonhomogeneous boundary value problem for the steady-state Navier–Stokes equations under the slip boundary conditions in two-dimensional multiply-connected bounded domains. Employing the approach of Korobkov-Pileckas-Russo (Ann. Math. 181(2), 769-807, 2015), we prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. The crucial ingredient of our proof is the fact that the total head pressure corresponding to the solution to the steady Euler equations takes a constant value on each connected component of the boundary.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence Theorems for the Steady-State Navier–Stokes Equations with Nonhomogeneous Slip Boundary Conditions in Two-dimensional Multiply-Connected Bounded Domains\",\"authors\":\"Giovanni P. Galdi, Tatsuki Yamamoto\",\"doi\":\"10.1007/s00021-024-00907-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the nonhomogeneous boundary value problem for the steady-state Navier–Stokes equations under the slip boundary conditions in two-dimensional multiply-connected bounded domains. Employing the approach of Korobkov-Pileckas-Russo (Ann. Math. 181(2), 769-807, 2015), we prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. The crucial ingredient of our proof is the fact that the total head pressure corresponding to the solution to the steady Euler equations takes a constant value on each connected component of the boundary.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00907-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00907-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence Theorems for the Steady-State Navier–Stokes Equations with Nonhomogeneous Slip Boundary Conditions in Two-dimensional Multiply-Connected Bounded Domains
We study the nonhomogeneous boundary value problem for the steady-state Navier–Stokes equations under the slip boundary conditions in two-dimensional multiply-connected bounded domains. Employing the approach of Korobkov-Pileckas-Russo (Ann. Math. 181(2), 769-807, 2015), we prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. The crucial ingredient of our proof is the fact that the total head pressure corresponding to the solution to the steady Euler equations takes a constant value on each connected component of the boundary.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.