{"title":"来自小麦锯蝇(Dolerus tritici)的新型伊夫拉病毒的完整基因组序列","authors":"Jiashu Guo, Wenwen Liu, Chen Chen, Zhongtian Xu, Frederic Francis, Xifeng Wang","doi":"10.1007/s00705-024-06206-0","DOIUrl":null,"url":null,"abstract":"<div><p>Little is known about the insect viruses in wheat sawfly, <i>Dolerus tritici</i>, which is an important agricultural insect feeding on wheat leaves. Here, we used RNA sequencing to identify a novel single positive-strand RNA virus from the larvae of wheat sawfly collected in northern China and then determined its complete genome sequence by rapid amplification of cDNA ends. The complete genome is 9,594 nt in length, including a polyA tail at its 3′ terminus, and it is predicted to encode a 326.3-kDa polyprotein. Phylogenetic analysis based on deduced amino acid sequences of the polyprotein revealed that this RNA virus clustered in a clade with deformed wing virus of the genus <i>Iflavirus</i>, family <i>Iflaviridae.</i> The full genome of this RNA virus shows 42.0–50.0% sequence identity with other iflaviruses. Comparisons of amino acid sequences showed that the coat protein of this RNA virus is most similar to that of slow bee paralysis virus, with 33.6% identity, suggesting that this virus is a new member in the genus <i>Iflavirus</i>. Thus, we have tentatively designated it as “Dolerus tritici iflavirus 1” (DtIV1). To our knowledge, this is the first report of an insect virus in wheat sawfly.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of a novel iflavirus from wheat sawfly (Dolerus tritici)\",\"authors\":\"Jiashu Guo, Wenwen Liu, Chen Chen, Zhongtian Xu, Frederic Francis, Xifeng Wang\",\"doi\":\"10.1007/s00705-024-06206-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Little is known about the insect viruses in wheat sawfly, <i>Dolerus tritici</i>, which is an important agricultural insect feeding on wheat leaves. Here, we used RNA sequencing to identify a novel single positive-strand RNA virus from the larvae of wheat sawfly collected in northern China and then determined its complete genome sequence by rapid amplification of cDNA ends. The complete genome is 9,594 nt in length, including a polyA tail at its 3′ terminus, and it is predicted to encode a 326.3-kDa polyprotein. Phylogenetic analysis based on deduced amino acid sequences of the polyprotein revealed that this RNA virus clustered in a clade with deformed wing virus of the genus <i>Iflavirus</i>, family <i>Iflaviridae.</i> The full genome of this RNA virus shows 42.0–50.0% sequence identity with other iflaviruses. Comparisons of amino acid sequences showed that the coat protein of this RNA virus is most similar to that of slow bee paralysis virus, with 33.6% identity, suggesting that this virus is a new member in the genus <i>Iflavirus</i>. Thus, we have tentatively designated it as “Dolerus tritici iflavirus 1” (DtIV1). To our knowledge, this is the first report of an insect virus in wheat sawfly.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-024-06206-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06206-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Complete genome sequence of a novel iflavirus from wheat sawfly (Dolerus tritici)
Little is known about the insect viruses in wheat sawfly, Dolerus tritici, which is an important agricultural insect feeding on wheat leaves. Here, we used RNA sequencing to identify a novel single positive-strand RNA virus from the larvae of wheat sawfly collected in northern China and then determined its complete genome sequence by rapid amplification of cDNA ends. The complete genome is 9,594 nt in length, including a polyA tail at its 3′ terminus, and it is predicted to encode a 326.3-kDa polyprotein. Phylogenetic analysis based on deduced amino acid sequences of the polyprotein revealed that this RNA virus clustered in a clade with deformed wing virus of the genus Iflavirus, family Iflaviridae. The full genome of this RNA virus shows 42.0–50.0% sequence identity with other iflaviruses. Comparisons of amino acid sequences showed that the coat protein of this RNA virus is most similar to that of slow bee paralysis virus, with 33.6% identity, suggesting that this virus is a new member in the genus Iflavirus. Thus, we have tentatively designated it as “Dolerus tritici iflavirus 1” (DtIV1). To our knowledge, this is the first report of an insect virus in wheat sawfly.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.