动力学 MMT 模型的局部均衡性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Pierre Germain, Joonhyun La, Katherine Zhiyuan Zhang
{"title":"动力学 MMT 模型的局部均衡性","authors":"Pierre Germain,&nbsp;Joonhyun La,&nbsp;Katherine Zhiyuan Zhang","doi":"10.1007/s00220-024-05205-1","DOIUrl":null,"url":null,"abstract":"<div><p>The MMT equation was proposed by Majda, McLaughlin and Tabak as a model to study wave turbulence. We focus on the kinetic equation associated to this Hamiltonian system, which is believed to give a way to predict turbulent spectra. We clarify the formulation of the problem, and we develop the local well-posedness theory for this equation. Our analysis uncovers a surprising nonlinear smoothing phenomenon.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Well-posedness for the Kinetic MMT Model\",\"authors\":\"Pierre Germain,&nbsp;Joonhyun La,&nbsp;Katherine Zhiyuan Zhang\",\"doi\":\"10.1007/s00220-024-05205-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The MMT equation was proposed by Majda, McLaughlin and Tabak as a model to study wave turbulence. We focus on the kinetic equation associated to this Hamiltonian system, which is believed to give a way to predict turbulent spectra. We clarify the formulation of the problem, and we develop the local well-posedness theory for this equation. Our analysis uncovers a surprising nonlinear smoothing phenomenon.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05205-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05205-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

MMT 方程由 Majda、McLaughlin 和 Tabak 提出,作为研究波湍流的模型。我们重点研究了与该哈密顿系统相关的动力学方程,该方程被认为是预测湍流频谱的一种方法。我们澄清了问题的表述,并发展了该方程的局部好拟性理论。我们的分析发现了一个令人惊讶的非线性平滑现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Well-posedness for the Kinetic MMT Model

The MMT equation was proposed by Majda, McLaughlin and Tabak as a model to study wave turbulence. We focus on the kinetic equation associated to this Hamiltonian system, which is believed to give a way to predict turbulent spectra. We clarify the formulation of the problem, and we develop the local well-posedness theory for this equation. Our analysis uncovers a surprising nonlinear smoothing phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信