量子参考框架、测量方案和量子场论中的局部代数类型

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Christopher J. Fewster, Daan W. Janssen, Leon Deryck Loveridge, Kasia Rejzner, James Waldron
{"title":"量子参考框架、测量方案和量子场论中的局部代数类型","authors":"Christopher J. Fewster,&nbsp;Daan W. Janssen,&nbsp;Leon Deryck Loveridge,&nbsp;Kasia Rejzner,&nbsp;James Waldron","doi":"10.1007/s00220-024-05180-7","DOIUrl":null,"url":null,"abstract":"<div><p>We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed in terms of the properties of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type <span>\\(\\text {II}_1\\)</span> factor. Our results build upon recent work of Chandrasekaran et al. (J High Energy Phys 2023(2): 1–56, 2023. arXiv:2206.10780), providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05180-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum Reference Frames, Measurement Schemes and the Type of Local Algebras in Quantum Field Theory\",\"authors\":\"Christopher J. Fewster,&nbsp;Daan W. Janssen,&nbsp;Leon Deryck Loveridge,&nbsp;Kasia Rejzner,&nbsp;James Waldron\",\"doi\":\"10.1007/s00220-024-05180-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed in terms of the properties of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type <span>\\\\(\\\\text {II}_1\\\\)</span> factor. Our results build upon recent work of Chandrasekaran et al. (J High Energy Phys 2023(2): 1–56, 2023. arXiv:2206.10780), providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05180-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05180-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05180-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们结合相对论量子测量理论和量子参照系(QRFs)建立了一个操作框架,在这个框架中,在具有对称性的背景上对量子场的局部测量是相对于 QRFs 来进行的。这就产生了量子场和参照系观测值的联合代数,该代数在时空等距群的自然作用下是不变的。对于适当类别的量子参照系,该代数是以交叉积为参数的。只要量子场具有良好的热特性(表现为在某个非零温度下存在一个 KMS 状态),我们就可以用模块理论来证明不变代数允许一个半无限迹。此外,如果量子参照系在同一温度下具有良好的热特性(用 KMS 权重的特性表示),那么这个迹就是有限的。我们给出了物理观测变量的不变代数成为type \(\text {II}_1\)因子的精确条件。我们的结果建立在钱德拉塞卡兰等人最近的工作基础之上(《高能物理杂志》2023(2):arXiv:2206.10780)的基础上,对这些发现进行了重要的数学概括,并完善了对其模型的操作理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Reference Frames, Measurement Schemes and the Type of Local Algebras in Quantum Field Theory

We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed in terms of the properties of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type \(\text {II}_1\) factor. Our results build upon recent work of Chandrasekaran et al. (J High Energy Phys 2023(2): 1–56, 2023. arXiv:2206.10780), providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信