存在两种互斥排序时超流体相刚性的低温变化

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Doyel Rakshit, Ajay Kumar Ghosh
{"title":"存在两种互斥排序时超流体相刚性的低温变化","authors":"Doyel Rakshit,&nbsp;Ajay Kumar Ghosh","doi":"10.1007/s10948-024-06872-w","DOIUrl":null,"url":null,"abstract":"<div><p>Superfluid phase stiffness (SPS) in the presence of two co-existing and mutually exclusive superconducting and magnetic ordering has been studied in (i) the pure EBCO and (ii) a composite system of nanoparticles of Sn and EBCO superconductors. SPS has been extracted in two different methods by using (i) nonlinear current–voltage (<i>IV</i>) characteristics and (ii) magnetization (<i>M</i>) as a function of the applied magnetic field (<i>H</i>). Variations of the SPS with temperature (<i>T</i>) are found to be different in transport and magnetic methods. A possible reason of the difference has been discussed. The nature of the variation of the SPS in the presence of nanoparticles of Sn has been explored in terms of the distribution of the bound vortex–anti-vortex pairs within the framework of the BKT transition.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Temperature Variation of Superfluid Phase Stiffness in the Presence of Two Mutually Exclusive Orderings\",\"authors\":\"Doyel Rakshit,&nbsp;Ajay Kumar Ghosh\",\"doi\":\"10.1007/s10948-024-06872-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Superfluid phase stiffness (SPS) in the presence of two co-existing and mutually exclusive superconducting and magnetic ordering has been studied in (i) the pure EBCO and (ii) a composite system of nanoparticles of Sn and EBCO superconductors. SPS has been extracted in two different methods by using (i) nonlinear current–voltage (<i>IV</i>) characteristics and (ii) magnetization (<i>M</i>) as a function of the applied magnetic field (<i>H</i>). Variations of the SPS with temperature (<i>T</i>) are found to be different in transport and magnetic methods. A possible reason of the difference has been discussed. The nature of the variation of the SPS in the presence of nanoparticles of Sn has been explored in terms of the distribution of the bound vortex–anti-vortex pairs within the framework of the BKT transition.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06872-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06872-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了 (i) 纯 EBCO 和 (ii) 锡和 EBCO 超导纳米粒子复合系统中存在两种共存且互斥的超导和磁有序情况下的超流体相刚度(SPS)。通过使用 (i) 非线性电流-电压 (IV) 特性和 (ii) 磁化 (M) 作为外加磁场 (H) 的函数,用两种不同的方法提取了 SPS。发现在传输和磁性方法中,SPS 随温度 (T) 的变化是不同的。我们讨论了造成这种差异的可能原因。根据 BKT 转变框架内束缚涡旋-反涡旋对的分布情况,探讨了存在纳米锡粒子时 SPS 变化的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low Temperature Variation of Superfluid Phase Stiffness in the Presence of Two Mutually Exclusive Orderings

Low Temperature Variation of Superfluid Phase Stiffness in the Presence of Two Mutually Exclusive Orderings

Superfluid phase stiffness (SPS) in the presence of two co-existing and mutually exclusive superconducting and magnetic ordering has been studied in (i) the pure EBCO and (ii) a composite system of nanoparticles of Sn and EBCO superconductors. SPS has been extracted in two different methods by using (i) nonlinear current–voltage (IV) characteristics and (ii) magnetization (M) as a function of the applied magnetic field (H). Variations of the SPS with temperature (T) are found to be different in transport and magnetic methods. A possible reason of the difference has been discussed. The nature of the variation of the SPS in the presence of nanoparticles of Sn has been explored in terms of the distribution of the bound vortex–anti-vortex pairs within the framework of the BKT transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信