Medina Mehenaoui, Nadia Chekir, Djilali Tassalit, Melissa Brachemi, Nada Bensadok, Seif El Islam Lebouachera
{"title":"从茶叶中绿色合成新型二氧化钛:去除亚甲基蓝,用于光催化应用","authors":"Medina Mehenaoui, Nadia Chekir, Djilali Tassalit, Melissa Brachemi, Nada Bensadok, Seif El Islam Lebouachera","doi":"10.1140/epjp/s13360-024-05849-x","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of dyes in nature has a significant impact on water quality and pollution. Water pollution has received much attention in recent years because of the importance of this resource to humankind’s long-term development, its scarcity as a result of industrialization, pollution, and the effects of climate change. Much research has been conducted on wastewater treatment and the removal of pollutants using photocatalysis, which employs various nanoparticles. Green synthesis, which uses plant extracts, is a simple, nontoxic, cost-effective, and environmentally friendly method for producing nanoparticles like titanium dioxide. This study uses green tea leaf extract to synthesize titanium dioxide nanoparticles (TiO₂ NPs) at temperatures of 400, 500, and 600°C using a green process, with the view of testing their efficiency for the photocatalytic removal of methylene blue dye from water under solar irradiation. TiO₂ NPs synthesized at 500°C showed good dye degradation over time (76%) compared to those synthesized at 400°C (51%) and 600°C (54%). At 500°C, the TiO₂ NPs are thoroughly characterized using XRD, SEM–EDS, UV–Vis spectroscopy, ATR-IR spectroscopy, and XRF. The results confirm the formation of nanoparticles. Titanium dioxide is of nanometric order, with an average crystallite size of approximately 15.2, according to XRD analysis. As a result, this study presents a green solution with a high potential for these nanoparticles to degrade the pollutant MB. These nanoparticles can be improved and used to degrade other pollutants through photocatalysis, as well as to contribute to water purificationQuery.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel green synthesis of TiO2 from tea leaves: removal of methylene blue for photocatalytic application\",\"authors\":\"Medina Mehenaoui, Nadia Chekir, Djilali Tassalit, Melissa Brachemi, Nada Bensadok, Seif El Islam Lebouachera\",\"doi\":\"10.1140/epjp/s13360-024-05849-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevalence of dyes in nature has a significant impact on water quality and pollution. Water pollution has received much attention in recent years because of the importance of this resource to humankind’s long-term development, its scarcity as a result of industrialization, pollution, and the effects of climate change. Much research has been conducted on wastewater treatment and the removal of pollutants using photocatalysis, which employs various nanoparticles. Green synthesis, which uses plant extracts, is a simple, nontoxic, cost-effective, and environmentally friendly method for producing nanoparticles like titanium dioxide. This study uses green tea leaf extract to synthesize titanium dioxide nanoparticles (TiO₂ NPs) at temperatures of 400, 500, and 600°C using a green process, with the view of testing their efficiency for the photocatalytic removal of methylene blue dye from water under solar irradiation. TiO₂ NPs synthesized at 500°C showed good dye degradation over time (76%) compared to those synthesized at 400°C (51%) and 600°C (54%). At 500°C, the TiO₂ NPs are thoroughly characterized using XRD, SEM–EDS, UV–Vis spectroscopy, ATR-IR spectroscopy, and XRF. The results confirm the formation of nanoparticles. Titanium dioxide is of nanometric order, with an average crystallite size of approximately 15.2, according to XRD analysis. As a result, this study presents a green solution with a high potential for these nanoparticles to degrade the pollutant MB. These nanoparticles can be improved and used to degrade other pollutants through photocatalysis, as well as to contribute to water purificationQuery.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05849-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05849-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel green synthesis of TiO2 from tea leaves: removal of methylene blue for photocatalytic application
The prevalence of dyes in nature has a significant impact on water quality and pollution. Water pollution has received much attention in recent years because of the importance of this resource to humankind’s long-term development, its scarcity as a result of industrialization, pollution, and the effects of climate change. Much research has been conducted on wastewater treatment and the removal of pollutants using photocatalysis, which employs various nanoparticles. Green synthesis, which uses plant extracts, is a simple, nontoxic, cost-effective, and environmentally friendly method for producing nanoparticles like titanium dioxide. This study uses green tea leaf extract to synthesize titanium dioxide nanoparticles (TiO₂ NPs) at temperatures of 400, 500, and 600°C using a green process, with the view of testing their efficiency for the photocatalytic removal of methylene blue dye from water under solar irradiation. TiO₂ NPs synthesized at 500°C showed good dye degradation over time (76%) compared to those synthesized at 400°C (51%) and 600°C (54%). At 500°C, the TiO₂ NPs are thoroughly characterized using XRD, SEM–EDS, UV–Vis spectroscopy, ATR-IR spectroscopy, and XRF. The results confirm the formation of nanoparticles. Titanium dioxide is of nanometric order, with an average crystallite size of approximately 15.2, according to XRD analysis. As a result, this study presents a green solution with a high potential for these nanoparticles to degrade the pollutant MB. These nanoparticles can be improved and used to degrade other pollutants through photocatalysis, as well as to contribute to water purificationQuery.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.