D. V. Rao, G. E. Gigante, Z. Zhong, R. Cesareo, A. Brunetti, N. Schiavon, T. Akatsuka, T. Yuasa, T. Takeda
{"title":"基于同步加速器的衍射增强成像和衍射增强成像与 CT X 射线成像系统相结合,为 30 千伏的种子成像","authors":"D. V. Rao, G. E. Gigante, Z. Zhong, R. Cesareo, A. Brunetti, N. Schiavon, T. Akatsuka, T. Yuasa, T. Takeda","doi":"10.1007/s00339-024-08122-1","DOIUrl":null,"url":null,"abstract":"<div><p>Utilized the upgraded Synchrotron-based non-destructive Diffraction-enhanced imaging and Diffraction-enhanced imaging coupled with CT X-ray imaging systems to image the chickpea seeds, to enhance the contrast in plant root architecture, visibility of fine structures of root architecture growth and some aspects of physiology at acceptable level. DEI-CT images were acquired with 30 keV synchrotron X-rays. A series of DEI-CT slices were assembled together, to form a 3D data set. DEI-CT images explored more structural information and morphology. Noticed detailed anatomical, physiological observations, and contrast mechanisms. With these systems, some of the complex plant traits, root morphology, growth of laterals and subsequent laterals can be visualized directly.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrotron-based diffraction-enhanced imaging and diffraction-enhanced imaging combined with CT X-ray imaging systems to image seeds at 30 keV\",\"authors\":\"D. V. Rao, G. E. Gigante, Z. Zhong, R. Cesareo, A. Brunetti, N. Schiavon, T. Akatsuka, T. Yuasa, T. Takeda\",\"doi\":\"10.1007/s00339-024-08122-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Utilized the upgraded Synchrotron-based non-destructive Diffraction-enhanced imaging and Diffraction-enhanced imaging coupled with CT X-ray imaging systems to image the chickpea seeds, to enhance the contrast in plant root architecture, visibility of fine structures of root architecture growth and some aspects of physiology at acceptable level. DEI-CT images were acquired with 30 keV synchrotron X-rays. A series of DEI-CT slices were assembled together, to form a 3D data set. DEI-CT images explored more structural information and morphology. Noticed detailed anatomical, physiological observations, and contrast mechanisms. With these systems, some of the complex plant traits, root morphology, growth of laterals and subsequent laterals can be visualized directly.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-024-08122-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08122-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synchrotron-based diffraction-enhanced imaging and diffraction-enhanced imaging combined with CT X-ray imaging systems to image seeds at 30 keV
Utilized the upgraded Synchrotron-based non-destructive Diffraction-enhanced imaging and Diffraction-enhanced imaging coupled with CT X-ray imaging systems to image the chickpea seeds, to enhance the contrast in plant root architecture, visibility of fine structures of root architecture growth and some aspects of physiology at acceptable level. DEI-CT images were acquired with 30 keV synchrotron X-rays. A series of DEI-CT slices were assembled together, to form a 3D data set. DEI-CT images explored more structural information and morphology. Noticed detailed anatomical, physiological observations, and contrast mechanisms. With these systems, some of the complex plant traits, root morphology, growth of laterals and subsequent laterals can be visualized directly.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.