角叉菜神经孢子菌细胞适应温度胁迫过程中的脂氧合酶

IF 1 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
S. Yu. Filippovich, G. P. Bachurina
{"title":"角叉菜神经孢子菌细胞适应温度胁迫过程中的脂氧合酶","authors":"S. Yu. Filippovich,&nbsp;G. P. Bachurina","doi":"10.1134/S0003683824604864","DOIUrl":null,"url":null,"abstract":"<p>The adaptation of the <i>N. crassa</i> lipoxygenase (LOX) in response to heat (45°C) and cold (4°C) shock was studied. The difference was revealed in the dynamics of the LOX activity depending on the growing conditions of the mycelium. After incubation of the surface culture at 45°C, a gradual increase in the specific activity of the enzyme was observed with maximum at 2–3 h, followed by a subsequent decrease to the initial level. Under the same conditions, in a submerged culture, a decrease in the LOX activity was observed after 5 min; however, after 1 h of incubation, the enzyme activity also reached the initial level. The sensitivity of the <i>N. crassa</i> LOX to elevated temperatures is very high, since it is noted only in a narrow temperature range: the effect was detected at 45<sup>o</sup>C; however, the enzymatic activity did not change in the culture incubated at 42°C, but, on the other hand, LOX was completely inactivated in the mycelium at 48°C. When the fungal cells were exposed to cold, the specific LOX activity increased after 1 h, then decreased to the initial level (2–3 h) and increased again, reaching a maximum after 18 h. When two stress factors, cold and starvation, acted simultaneously on the <i>N. crassa</i> cells, the treatment with cold had a decisive effect on the LOX activity, which was especially noticeable after 8 h of incubation.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 6","pages":"1171 - 1176"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipoxygenase in Adaptation of the Neurospora crassa Cells to Temperature Stress\",\"authors\":\"S. Yu. Filippovich,&nbsp;G. P. Bachurina\",\"doi\":\"10.1134/S0003683824604864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The adaptation of the <i>N. crassa</i> lipoxygenase (LOX) in response to heat (45°C) and cold (4°C) shock was studied. The difference was revealed in the dynamics of the LOX activity depending on the growing conditions of the mycelium. After incubation of the surface culture at 45°C, a gradual increase in the specific activity of the enzyme was observed with maximum at 2–3 h, followed by a subsequent decrease to the initial level. Under the same conditions, in a submerged culture, a decrease in the LOX activity was observed after 5 min; however, after 1 h of incubation, the enzyme activity also reached the initial level. The sensitivity of the <i>N. crassa</i> LOX to elevated temperatures is very high, since it is noted only in a narrow temperature range: the effect was detected at 45<sup>o</sup>C; however, the enzymatic activity did not change in the culture incubated at 42°C, but, on the other hand, LOX was completely inactivated in the mycelium at 48°C. When the fungal cells were exposed to cold, the specific LOX activity increased after 1 h, then decreased to the initial level (2–3 h) and increased again, reaching a maximum after 18 h. When two stress factors, cold and starvation, acted simultaneously on the <i>N. crassa</i> cells, the treatment with cold had a decisive effect on the LOX activity, which was especially noticeable after 8 h of incubation.</p>\",\"PeriodicalId\":466,\"journal\":{\"name\":\"Applied Biochemistry and Microbiology\",\"volume\":\"60 6\",\"pages\":\"1171 - 1176\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0003683824604864\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824604864","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了N. crassa脂氧合酶(LOX)对热(45°C)和冷(4°C)冲击的适应性。LOX活性的动态变化取决于菌丝体的生长条件。在45°C表面培养后,观察到酶的比活性逐渐增加,在2-3 h达到最大值,随后下降到初始水平。在相同条件下,在深层培养中,LOX活性在5分钟后下降;但孵育1h后,酶活性也达到初始水平。N. crassa LOX对高温的敏感性非常高,因为它只在一个狭窄的温度范围内被注意到:在45℃时检测到效果;然而,在42°C的培养中,酶活性没有变化,但另一方面,LOX在48°C的菌丝中完全失活。低温条件下,真菌细胞的LOX活性在1 h后升高,2 ~ 3 h后降至初始水平,18 h后再次升高,达到最大值。当低温和饥饿两种胁迫因素同时作用于糙稻细胞时,低温处理对LOX活性有决定性影响,在8 h后尤为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipoxygenase in Adaptation of the Neurospora crassa Cells to Temperature Stress

The adaptation of the N. crassa lipoxygenase (LOX) in response to heat (45°C) and cold (4°C) shock was studied. The difference was revealed in the dynamics of the LOX activity depending on the growing conditions of the mycelium. After incubation of the surface culture at 45°C, a gradual increase in the specific activity of the enzyme was observed with maximum at 2–3 h, followed by a subsequent decrease to the initial level. Under the same conditions, in a submerged culture, a decrease in the LOX activity was observed after 5 min; however, after 1 h of incubation, the enzyme activity also reached the initial level. The sensitivity of the N. crassa LOX to elevated temperatures is very high, since it is noted only in a narrow temperature range: the effect was detected at 45oC; however, the enzymatic activity did not change in the culture incubated at 42°C, but, on the other hand, LOX was completely inactivated in the mycelium at 48°C. When the fungal cells were exposed to cold, the specific LOX activity increased after 1 h, then decreased to the initial level (2–3 h) and increased again, reaching a maximum after 18 h. When two stress factors, cold and starvation, acted simultaneously on the N. crassa cells, the treatment with cold had a decisive effect on the LOX activity, which was especially noticeable after 8 h of incubation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Microbiology
Applied Biochemistry and Microbiology 生物-生物工程与应用微生物
CiteScore
1.70
自引率
12.50%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信