Md. Yasir Bhat, Waheed A. Adeosun, Kaitlyn Prenger, Yarjan Abdul Samad, Kin Liao, Michael Naguib, Samuel Mao, Ahsanulhaq Qurashi
{"title":"基于 MXenes 的混合材料在能量存储和转换应用中的前沿研究","authors":"Md. Yasir Bhat, Waheed A. Adeosun, Kaitlyn Prenger, Yarjan Abdul Samad, Kin Liao, Michael Naguib, Samuel Mao, Ahsanulhaq Qurashi","doi":"10.1007/s42114-024-01121-z","DOIUrl":null,"url":null,"abstract":"<div><p>Since their breakthrough in 2011, MXenes, transition metal carbides, and/or nitrides have been studied extensively. This large family of two-dimensional materials has shown enormous potential as electrode materials for different applications including catalysis, energy storage, and conversion. MXenes are suitable for the aforementioned applications due to their high electrical conductivity, tunable surface chemistry, large surface area, layered structure, flexural property, and hydrophilicity amongst others. This article aims to cover the development of MXene/hybrid structures their computational insight, synthesis techniques, structural morphology, properties, and potential applications in energy conversion and storage devices. Several approaches have been adopted to develop MXene hybrids, such as modifying traditional MXenes by decorating surfaces, intercalating, and in-situ fabrication, to target high electrochemical performance. In addition, this review has concisely and uniquely presented recent advances in the application of MXene hybrid structures in battery design, clean hydrogen fuel generation, carbon dioxide reduction, and other relevant reactions. Finally, the latest trends and prospects of hybrid MXene materials are also summarized.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01121-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Frontiers of MXenes-based hybrid materials for energy storage and conversion applications\",\"authors\":\"Md. Yasir Bhat, Waheed A. Adeosun, Kaitlyn Prenger, Yarjan Abdul Samad, Kin Liao, Michael Naguib, Samuel Mao, Ahsanulhaq Qurashi\",\"doi\":\"10.1007/s42114-024-01121-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since their breakthrough in 2011, MXenes, transition metal carbides, and/or nitrides have been studied extensively. This large family of two-dimensional materials has shown enormous potential as electrode materials for different applications including catalysis, energy storage, and conversion. MXenes are suitable for the aforementioned applications due to their high electrical conductivity, tunable surface chemistry, large surface area, layered structure, flexural property, and hydrophilicity amongst others. This article aims to cover the development of MXene/hybrid structures their computational insight, synthesis techniques, structural morphology, properties, and potential applications in energy conversion and storage devices. Several approaches have been adopted to develop MXene hybrids, such as modifying traditional MXenes by decorating surfaces, intercalating, and in-situ fabrication, to target high electrochemical performance. In addition, this review has concisely and uniquely presented recent advances in the application of MXene hybrid structures in battery design, clean hydrogen fuel generation, carbon dioxide reduction, and other relevant reactions. Finally, the latest trends and prospects of hybrid MXene materials are also summarized.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-024-01121-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01121-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01121-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Frontiers of MXenes-based hybrid materials for energy storage and conversion applications
Since their breakthrough in 2011, MXenes, transition metal carbides, and/or nitrides have been studied extensively. This large family of two-dimensional materials has shown enormous potential as electrode materials for different applications including catalysis, energy storage, and conversion. MXenes are suitable for the aforementioned applications due to their high electrical conductivity, tunable surface chemistry, large surface area, layered structure, flexural property, and hydrophilicity amongst others. This article aims to cover the development of MXene/hybrid structures their computational insight, synthesis techniques, structural morphology, properties, and potential applications in energy conversion and storage devices. Several approaches have been adopted to develop MXene hybrids, such as modifying traditional MXenes by decorating surfaces, intercalating, and in-situ fabrication, to target high electrochemical performance. In addition, this review has concisely and uniquely presented recent advances in the application of MXene hybrid structures in battery design, clean hydrogen fuel generation, carbon dioxide reduction, and other relevant reactions. Finally, the latest trends and prospects of hybrid MXene materials are also summarized.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.