{"title":"高温热流和拉伸载荷共同作用下 Al2O3 织物的断裂破坏行为","authors":"Kai Guo, Zhenyu Zhang, Hongxiang Cao, Mengzhou Chang, Chuang Chen, Enling Tang","doi":"10.1140/epjp/s13360-024-05818-4","DOIUrl":null,"url":null,"abstract":"<div><p>The aircraft will be subjected to severe aerodynamic and thermal effects during the reentry of the spacecraft into the earth’s atmosphere. Flexible woven structure plays an important role in thermal protection of aircraft surface, and Al<sub>2</sub>O<sub>3</sub> fiber fabric is an important candidate material in weaponry, aerospace and other fields, which puts forward higher requirements for the prediction of mechanical properties at high temperature. In this paper, the extreme environment faced by the thermal protection structure during the high-speed entry/reentry of spacecraft is simulated by using the self-built loading and testing system of oxygen–methane high-temperature heat flow and mechanical stretching. Based on the experimental data, the finite element model of Al<sub>2</sub>O<sub>3</sub> fabric was constructed. Combined with the stress–strain relationship and physical parameters of the material, the fracture process of Al<sub>2</sub>O<sub>3</sub> fiber fabric under the combined action of high-temperature heat flow and tensile load was simulated. The results show that due to the poor high-temperature stability of amorphous SiO<sub>2</sub> phase in Al<sub>2</sub>O<sub>3</sub> fiber under high-temperature heat flow, the surface defects of the fiber surface increase due to hot corrosion, which reduces the mechanical properties of the fabric. The breaking strength, elongation at break, elastic modulus and strength limit of Al<sub>2</sub>O<sub>3</sub> fabric at 1300 °C were 0.318 kN/cm, 9.108%, 319 MPa, 51.1 MPa (plain) and 0.412 kN/cm, 3.356%, 720 MPa, 58.44 MPa (twill), respectively. Due to the different forms of fabric structure, warp yarns exhibit varying degrees of buckling. Under the action of tensile load, the warp yarn is from buckling to straightening, so that the stress–strain relationship of Al<sub>2</sub>O<sub>3</sub> fabric has nonlinear characteristics. The nonlinear Ogden model can well simulate the deformation process of Al<sub>2</sub>O<sub>3</sub> fabric under high-temperature heat flow.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture failure behavior of Al2O3 fabric under the combined interaction of high-temperature heat flow and tensile load\",\"authors\":\"Kai Guo, Zhenyu Zhang, Hongxiang Cao, Mengzhou Chang, Chuang Chen, Enling Tang\",\"doi\":\"10.1140/epjp/s13360-024-05818-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aircraft will be subjected to severe aerodynamic and thermal effects during the reentry of the spacecraft into the earth’s atmosphere. Flexible woven structure plays an important role in thermal protection of aircraft surface, and Al<sub>2</sub>O<sub>3</sub> fiber fabric is an important candidate material in weaponry, aerospace and other fields, which puts forward higher requirements for the prediction of mechanical properties at high temperature. In this paper, the extreme environment faced by the thermal protection structure during the high-speed entry/reentry of spacecraft is simulated by using the self-built loading and testing system of oxygen–methane high-temperature heat flow and mechanical stretching. Based on the experimental data, the finite element model of Al<sub>2</sub>O<sub>3</sub> fabric was constructed. Combined with the stress–strain relationship and physical parameters of the material, the fracture process of Al<sub>2</sub>O<sub>3</sub> fiber fabric under the combined action of high-temperature heat flow and tensile load was simulated. The results show that due to the poor high-temperature stability of amorphous SiO<sub>2</sub> phase in Al<sub>2</sub>O<sub>3</sub> fiber under high-temperature heat flow, the surface defects of the fiber surface increase due to hot corrosion, which reduces the mechanical properties of the fabric. The breaking strength, elongation at break, elastic modulus and strength limit of Al<sub>2</sub>O<sub>3</sub> fabric at 1300 °C were 0.318 kN/cm, 9.108%, 319 MPa, 51.1 MPa (plain) and 0.412 kN/cm, 3.356%, 720 MPa, 58.44 MPa (twill), respectively. Due to the different forms of fabric structure, warp yarns exhibit varying degrees of buckling. Under the action of tensile load, the warp yarn is from buckling to straightening, so that the stress–strain relationship of Al<sub>2</sub>O<sub>3</sub> fabric has nonlinear characteristics. The nonlinear Ogden model can well simulate the deformation process of Al<sub>2</sub>O<sub>3</sub> fabric under high-temperature heat flow.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05818-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05818-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fracture failure behavior of Al2O3 fabric under the combined interaction of high-temperature heat flow and tensile load
The aircraft will be subjected to severe aerodynamic and thermal effects during the reentry of the spacecraft into the earth’s atmosphere. Flexible woven structure plays an important role in thermal protection of aircraft surface, and Al2O3 fiber fabric is an important candidate material in weaponry, aerospace and other fields, which puts forward higher requirements for the prediction of mechanical properties at high temperature. In this paper, the extreme environment faced by the thermal protection structure during the high-speed entry/reentry of spacecraft is simulated by using the self-built loading and testing system of oxygen–methane high-temperature heat flow and mechanical stretching. Based on the experimental data, the finite element model of Al2O3 fabric was constructed. Combined with the stress–strain relationship and physical parameters of the material, the fracture process of Al2O3 fiber fabric under the combined action of high-temperature heat flow and tensile load was simulated. The results show that due to the poor high-temperature stability of amorphous SiO2 phase in Al2O3 fiber under high-temperature heat flow, the surface defects of the fiber surface increase due to hot corrosion, which reduces the mechanical properties of the fabric. The breaking strength, elongation at break, elastic modulus and strength limit of Al2O3 fabric at 1300 °C were 0.318 kN/cm, 9.108%, 319 MPa, 51.1 MPa (plain) and 0.412 kN/cm, 3.356%, 720 MPa, 58.44 MPa (twill), respectively. Due to the different forms of fabric structure, warp yarns exhibit varying degrees of buckling. Under the action of tensile load, the warp yarn is from buckling to straightening, so that the stress–strain relationship of Al2O3 fabric has nonlinear characteristics. The nonlinear Ogden model can well simulate the deformation process of Al2O3 fabric under high-temperature heat flow.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.