石墨烯复合材料用于水修复:概述其先进性能,重点关注挑战和未来前景

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Brij Bhushan, Priyanka Negi, Arunima Nayak, Sonali Goyal
{"title":"石墨烯复合材料用于水修复:概述其先进性能,重点关注挑战和未来前景","authors":"Brij Bhushan,&nbsp;Priyanka Negi,&nbsp;Arunima Nayak,&nbsp;Sonali Goyal","doi":"10.1007/s42114-024-01088-x","DOIUrl":null,"url":null,"abstract":"<div><p>The last decade has seen dramatic progress in graphene-based composites as advanced adsorbents for application in wastewater treatment. The ability to be tuned and modified as per application-based requirement especially the environmental conditions, nature of different adsorbate moieties, etc. has driven extensive research activity on graphene-based composites. Research publication has shown a spurt in reviews on the synthesis, properties, modifications and applications of such adsorbents. Still a well-defined classification of graphene-based composites and a detailed assessment on the binding affinity of various materials with graphene are missing. A clear picture regarding the advanced properties exhibited by the graphene-based composites vis-à-vis their pristine counterparts is missing. Finally, the adsorption behaviour of graphene-based composites towards a particular class of pollutants is also vague in the literature. Thus, with the aim of providing information on the interfacial surface interactions between the different class of materials with graphene-based materials, the review has presented a systematic classification of graphene-based composites and provided a comprehensive overview of the updated literature on the material properties and adsorptive performance of such classified adsorbents towards the removal of different organic and metal ion pollutants. The overview has detailed not only on the experimental parameters, adsorption behaviour, regeneration efficiency but also on the mechanistic aspects. A comparative assessment has highlighted the advancements made for the graphene-based composites. Challenges and gaps thus identified have provided a road map for future research prospects in developing a general criteria for designing graphene-based composites as per the nature and behaviour of particular class of target pollutant in aqueous medium under different conditions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene composites for water remediation: an overview of their advanced performance with focus on challenges and future prospects\",\"authors\":\"Brij Bhushan,&nbsp;Priyanka Negi,&nbsp;Arunima Nayak,&nbsp;Sonali Goyal\",\"doi\":\"10.1007/s42114-024-01088-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The last decade has seen dramatic progress in graphene-based composites as advanced adsorbents for application in wastewater treatment. The ability to be tuned and modified as per application-based requirement especially the environmental conditions, nature of different adsorbate moieties, etc. has driven extensive research activity on graphene-based composites. Research publication has shown a spurt in reviews on the synthesis, properties, modifications and applications of such adsorbents. Still a well-defined classification of graphene-based composites and a detailed assessment on the binding affinity of various materials with graphene are missing. A clear picture regarding the advanced properties exhibited by the graphene-based composites vis-à-vis their pristine counterparts is missing. Finally, the adsorption behaviour of graphene-based composites towards a particular class of pollutants is also vague in the literature. Thus, with the aim of providing information on the interfacial surface interactions between the different class of materials with graphene-based materials, the review has presented a systematic classification of graphene-based composites and provided a comprehensive overview of the updated literature on the material properties and adsorptive performance of such classified adsorbents towards the removal of different organic and metal ion pollutants. The overview has detailed not only on the experimental parameters, adsorption behaviour, regeneration efficiency but also on the mechanistic aspects. A comparative assessment has highlighted the advancements made for the graphene-based composites. Challenges and gaps thus identified have provided a road map for future research prospects in developing a general criteria for designing graphene-based composites as per the nature and behaviour of particular class of target pollutant in aqueous medium under different conditions.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01088-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01088-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,石墨烯基复合材料作为高级吸附剂在废水处理中的应用取得了巨大的进展。石墨烯基复合材料能够根据应用需求进行调整和修改,特别是环境条件、不同吸附质的性质等,这推动了石墨烯基复合材料的广泛研究活动。研究出版物显示了对这种吸附剂的合成、性质、改性和应用的评论。然而,石墨烯基复合材料的明确分类和各种材料与石墨烯的结合亲和力的详细评估仍然缺失。关于石墨烯基复合材料与-à-vis的原始对应物所表现出的先进性能的清晰图像是缺失的。最后,石墨烯基复合材料对一类特定污染物的吸附行为在文献中也是模糊的。因此,为了提供不同类别的材料与石墨烯基材料之间的界面表面相互作用的信息,本文对石墨烯基复合材料进行了系统的分类,并对这些分类吸附剂在去除不同有机和金属离子污染物方面的材料性能和吸附性能的最新文献进行了全面的综述。综述了实验参数、吸附行为、再生效率及机理等方面的研究进展。一项比较评估强调了石墨烯基复合材料的进步。由此确定的挑战和差距为未来的研究前景提供了路线图,可以根据不同条件下水介质中特定类别的目标污染物的性质和行为,制定设计石墨烯基复合材料的一般标准。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene composites for water remediation: an overview of their advanced performance with focus on challenges and future prospects

The last decade has seen dramatic progress in graphene-based composites as advanced adsorbents for application in wastewater treatment. The ability to be tuned and modified as per application-based requirement especially the environmental conditions, nature of different adsorbate moieties, etc. has driven extensive research activity on graphene-based composites. Research publication has shown a spurt in reviews on the synthesis, properties, modifications and applications of such adsorbents. Still a well-defined classification of graphene-based composites and a detailed assessment on the binding affinity of various materials with graphene are missing. A clear picture regarding the advanced properties exhibited by the graphene-based composites vis-à-vis their pristine counterparts is missing. Finally, the adsorption behaviour of graphene-based composites towards a particular class of pollutants is also vague in the literature. Thus, with the aim of providing information on the interfacial surface interactions between the different class of materials with graphene-based materials, the review has presented a systematic classification of graphene-based composites and provided a comprehensive overview of the updated literature on the material properties and adsorptive performance of such classified adsorbents towards the removal of different organic and metal ion pollutants. The overview has detailed not only on the experimental parameters, adsorption behaviour, regeneration efficiency but also on the mechanistic aspects. A comparative assessment has highlighted the advancements made for the graphene-based composites. Challenges and gaps thus identified have provided a road map for future research prospects in developing a general criteria for designing graphene-based composites as per the nature and behaviour of particular class of target pollutant in aqueous medium under different conditions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信