Jianhui Wu, Tao Sun, Zhenkui Liang, Guoqiang Huang, Wei Guan, Jicheng Gao, Lin Zhao, Yifu Shen
{"title":"使用单肩和双肩旋转工具焊接异种摩擦搅拌铝合金的微观结构特征和机械性能对比研究","authors":"Jianhui Wu, Tao Sun, Zhenkui Liang, Guoqiang Huang, Wei Guan, Jicheng Gao, Lin Zhao, Yifu Shen","doi":"10.1007/s40194-024-01875-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the friction stir butt of 2024 aluminum alloy with 6061-T6 aluminum alloy using both double rotating shoulder friction stir welding (double rotating shoulder friction stir welding, DRS-FSW) and conventional friction stir welding (FSW) techniques. The differences in joint structure and morphology and mechanical properties between DRS-FSW and FSW joints were investigated. Defect-free joints were obtained for both DRS-FSW and FSW at a rotational speed of 600 r/min and a welding speed of 30 mm/min. Compared to the cross-section morphology of the dissimilar aluminum alloy joints of FSW, the morphology of the shoulder-affected zone (SAZ) and weld nugget zone (WNZ) of the DRS-FSW joints is more complex. The longitudinal morphology of the DRS-FSW joints shows complex material flow variations. The microstructure of the weld nugget zone (WNZ) of DRS-FSW joints is dominated by recrystallization. The microhardness magnitude and distribution are approximately the same for both. The FSW tensile properties are higher than those of DRS-FSW. Both DRS-FSW and FSW tensile fracture locations are in the heat-affected zone (HAZ) on the retreating side (RS) of the joint, and both exhibit ductile behavior. This paper is a further exploratory study of the double stirring technique.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"15 - 29"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study on microstructure characteristics and mechanical properties of dissimilar friction stir welded aluminum alloy using single and double rotating shoulder tools\",\"authors\":\"Jianhui Wu, Tao Sun, Zhenkui Liang, Guoqiang Huang, Wei Guan, Jicheng Gao, Lin Zhao, Yifu Shen\",\"doi\":\"10.1007/s40194-024-01875-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the friction stir butt of 2024 aluminum alloy with 6061-T6 aluminum alloy using both double rotating shoulder friction stir welding (double rotating shoulder friction stir welding, DRS-FSW) and conventional friction stir welding (FSW) techniques. The differences in joint structure and morphology and mechanical properties between DRS-FSW and FSW joints were investigated. Defect-free joints were obtained for both DRS-FSW and FSW at a rotational speed of 600 r/min and a welding speed of 30 mm/min. Compared to the cross-section morphology of the dissimilar aluminum alloy joints of FSW, the morphology of the shoulder-affected zone (SAZ) and weld nugget zone (WNZ) of the DRS-FSW joints is more complex. The longitudinal morphology of the DRS-FSW joints shows complex material flow variations. The microstructure of the weld nugget zone (WNZ) of DRS-FSW joints is dominated by recrystallization. The microhardness magnitude and distribution are approximately the same for both. The FSW tensile properties are higher than those of DRS-FSW. Both DRS-FSW and FSW tensile fracture locations are in the heat-affected zone (HAZ) on the retreating side (RS) of the joint, and both exhibit ductile behavior. This paper is a further exploratory study of the double stirring technique.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 1\",\"pages\":\"15 - 29\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01875-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01875-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Comparative study on microstructure characteristics and mechanical properties of dissimilar friction stir welded aluminum alloy using single and double rotating shoulder tools
This study investigates the friction stir butt of 2024 aluminum alloy with 6061-T6 aluminum alloy using both double rotating shoulder friction stir welding (double rotating shoulder friction stir welding, DRS-FSW) and conventional friction stir welding (FSW) techniques. The differences in joint structure and morphology and mechanical properties between DRS-FSW and FSW joints were investigated. Defect-free joints were obtained for both DRS-FSW and FSW at a rotational speed of 600 r/min and a welding speed of 30 mm/min. Compared to the cross-section morphology of the dissimilar aluminum alloy joints of FSW, the morphology of the shoulder-affected zone (SAZ) and weld nugget zone (WNZ) of the DRS-FSW joints is more complex. The longitudinal morphology of the DRS-FSW joints shows complex material flow variations. The microstructure of the weld nugget zone (WNZ) of DRS-FSW joints is dominated by recrystallization. The microhardness magnitude and distribution are approximately the same for both. The FSW tensile properties are higher than those of DRS-FSW. Both DRS-FSW and FSW tensile fracture locations are in the heat-affected zone (HAZ) on the retreating side (RS) of the joint, and both exhibit ductile behavior. This paper is a further exploratory study of the double stirring technique.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.