TALYS 中裂变碎片蒸发的随机文件:总体蒙特卡洛方法

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
P. Karlsson, A. Al-Adili, A. Göök, Z. Gao, S. Pomp, H. Sjöstrand, A. Solders, A. Koning
{"title":"TALYS 中裂变碎片蒸发的随机文件:总体蒙特卡洛方法","authors":"P. Karlsson,&nbsp;A. Al-Adili,&nbsp;A. Göök,&nbsp;Z. Gao,&nbsp;S. Pomp,&nbsp;H. Sjöstrand,&nbsp;A. Solders,&nbsp;A. Koning","doi":"10.1140/epja/s10050-024-01451-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have applied the Total Monte Carlo (TMC) methodology in the simulation of the de-excitation process of primary fission fragments (FF) within the TALYS code. Our objective was to develop a method for assessing fission model deficiencies and parameter sensitivities. The input fission fragment data used by TALYS were systematically varied. This was done using the GEF code to generate 10,000 random files by randomizing the 94 model parameters of GEF that influence both fission yields and their energy distributions. The GEF parameters were varied randomly within 3% of the default value, assuming a normal probability distribution. As a result of this parameter variation, significant changes could be identified for several observables, including the multiplicities of <span>\\(\\gamma \\)</span> rays and prompt neutrons, as well as their spectra. Additionally, we investigate the impact of angular momentum distribution on the de-excitation data of both GEF and TALYS. Finally, we present an attempt to construct a best parameter file benchmarked against evaluated nuclear data files.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01451-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Random files for fission fragment evaporation in TALYS: a total Monte Carlo approach\",\"authors\":\"P. Karlsson,&nbsp;A. Al-Adili,&nbsp;A. Göök,&nbsp;Z. Gao,&nbsp;S. Pomp,&nbsp;H. Sjöstrand,&nbsp;A. Solders,&nbsp;A. Koning\",\"doi\":\"10.1140/epja/s10050-024-01451-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we have applied the Total Monte Carlo (TMC) methodology in the simulation of the de-excitation process of primary fission fragments (FF) within the TALYS code. Our objective was to develop a method for assessing fission model deficiencies and parameter sensitivities. The input fission fragment data used by TALYS were systematically varied. This was done using the GEF code to generate 10,000 random files by randomizing the 94 model parameters of GEF that influence both fission yields and their energy distributions. The GEF parameters were varied randomly within 3% of the default value, assuming a normal probability distribution. As a result of this parameter variation, significant changes could be identified for several observables, including the multiplicities of <span>\\\\(\\\\gamma \\\\)</span> rays and prompt neutrons, as well as their spectra. Additionally, we investigate the impact of angular momentum distribution on the de-excitation data of both GEF and TALYS. Finally, we present an attempt to construct a best parameter file benchmarked against evaluated nuclear data files.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"60 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01451-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01451-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01451-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random files for fission fragment evaporation in TALYS: a total Monte Carlo approach

In this study, we have applied the Total Monte Carlo (TMC) methodology in the simulation of the de-excitation process of primary fission fragments (FF) within the TALYS code. Our objective was to develop a method for assessing fission model deficiencies and parameter sensitivities. The input fission fragment data used by TALYS were systematically varied. This was done using the GEF code to generate 10,000 random files by randomizing the 94 model parameters of GEF that influence both fission yields and their energy distributions. The GEF parameters were varied randomly within 3% of the default value, assuming a normal probability distribution. As a result of this parameter variation, significant changes could be identified for several observables, including the multiplicities of \(\gamma \) rays and prompt neutrons, as well as their spectra. Additionally, we investigate the impact of angular momentum distribution on the de-excitation data of both GEF and TALYS. Finally, we present an attempt to construct a best parameter file benchmarked against evaluated nuclear data files.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信