用于氧还原反应的富氟希夫碱配体衍生 Fe/N-C-F 和 Co/N-C-F 催化剂:合成、实验验证和 DFT 见解†。

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sumanta Kumar Das, Shaik Gouse Peera, Aiswarya Kesh, Prabakaran Varathan and Akhila Kumar Sahu
{"title":"用于氧还原反应的富氟希夫碱配体衍生 Fe/N-C-F 和 Co/N-C-F 催化剂:合成、实验验证和 DFT 见解†。","authors":"Sumanta Kumar Das, Shaik Gouse Peera, Aiswarya Kesh, Prabakaran Varathan and Akhila Kumar Sahu","doi":"10.1039/D4SE01370K","DOIUrl":null,"url":null,"abstract":"<p >The development of cost effective and durable catalysts for the electrochemical reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O is paramount for energy conversion devices such as fuel cells and Zn–air batteries. In this research work, we have developed a unique strategy for the synthesis of active and stable electrocatalysts comprising Fe and Co transition metals in combination with N and F dopants in the carbon matrix. This research also introduces an innovative approach for synthesizing Fe/N–C–F and Co/N–C–F electrocatalysts utilizing organic Schiff base ligands and their coordination complexes with Fe and Co transition metals. The synthesized Fe/N–C–F and Co/N–C–F catalysts have been systematically evaluated for their physicochemical properties and electronic states by using HR-TEM, XPS analysis and electrochemical characterization in 0.1 M aqueous KOH electrolyte. The optimized Fe/N–C–F catalyst shows a half-wave potential of 0.88 V <em>vs.</em> RHE and superior durability evaluated up to 20 000 cycles with only a marginal potential drop of ∼27 mV in its <em>E</em><small><sub>1/2</sub></small> potential value compared to the Pt/C catalyst. Furthermore, the reaction pathway and Gibbs free energy of the ORR intermediates in Fe/N–C–F and Co/N–C–F catalysts have been evaluated by DFT analysis.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 1","pages":" 231-246"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-rich Schiff base ligand derived Fe/N–C–F and Co/N–C–F catalysts for the oxygen reduction reaction: synthesis, experimental validation, and DFT insights†\",\"authors\":\"Sumanta Kumar Das, Shaik Gouse Peera, Aiswarya Kesh, Prabakaran Varathan and Akhila Kumar Sahu\",\"doi\":\"10.1039/D4SE01370K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of cost effective and durable catalysts for the electrochemical reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O is paramount for energy conversion devices such as fuel cells and Zn–air batteries. In this research work, we have developed a unique strategy for the synthesis of active and stable electrocatalysts comprising Fe and Co transition metals in combination with N and F dopants in the carbon matrix. This research also introduces an innovative approach for synthesizing Fe/N–C–F and Co/N–C–F electrocatalysts utilizing organic Schiff base ligands and their coordination complexes with Fe and Co transition metals. The synthesized Fe/N–C–F and Co/N–C–F catalysts have been systematically evaluated for their physicochemical properties and electronic states by using HR-TEM, XPS analysis and electrochemical characterization in 0.1 M aqueous KOH electrolyte. The optimized Fe/N–C–F catalyst shows a half-wave potential of 0.88 V <em>vs.</em> RHE and superior durability evaluated up to 20 000 cycles with only a marginal potential drop of ∼27 mV in its <em>E</em><small><sub>1/2</sub></small> potential value compared to the Pt/C catalyst. Furthermore, the reaction pathway and Gibbs free energy of the ORR intermediates in Fe/N–C–F and Co/N–C–F catalysts have been evaluated by DFT analysis.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 1\",\"pages\":\" 231-246\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01370k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01370k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorine-rich Schiff base ligand derived Fe/N–C–F and Co/N–C–F catalysts for the oxygen reduction reaction: synthesis, experimental validation, and DFT insights†

Fluorine-rich Schiff base ligand derived Fe/N–C–F and Co/N–C–F catalysts for the oxygen reduction reaction: synthesis, experimental validation, and DFT insights†

The development of cost effective and durable catalysts for the electrochemical reduction of O2 to H2O is paramount for energy conversion devices such as fuel cells and Zn–air batteries. In this research work, we have developed a unique strategy for the synthesis of active and stable electrocatalysts comprising Fe and Co transition metals in combination with N and F dopants in the carbon matrix. This research also introduces an innovative approach for synthesizing Fe/N–C–F and Co/N–C–F electrocatalysts utilizing organic Schiff base ligands and their coordination complexes with Fe and Co transition metals. The synthesized Fe/N–C–F and Co/N–C–F catalysts have been systematically evaluated for their physicochemical properties and electronic states by using HR-TEM, XPS analysis and electrochemical characterization in 0.1 M aqueous KOH electrolyte. The optimized Fe/N–C–F catalyst shows a half-wave potential of 0.88 V vs. RHE and superior durability evaluated up to 20 000 cycles with only a marginal potential drop of ∼27 mV in its E1/2 potential value compared to the Pt/C catalyst. Furthermore, the reaction pathway and Gibbs free energy of the ORR intermediates in Fe/N–C–F and Co/N–C–F catalysts have been evaluated by DFT analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信