非共线稀疏均匀阵列的高精度方位估计

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongyong Wang;Xiaolong Chen;Weibo Deng;Caisheng Zhang;Yonghua Xue
{"title":"非共线稀疏均匀阵列的高精度方位估计","authors":"Hongyong Wang;Xiaolong Chen;Weibo Deng;Caisheng Zhang;Yonghua Xue","doi":"10.1109/LSP.2024.3510462","DOIUrl":null,"url":null,"abstract":"Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"206-210"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Accuracy DOA Estimation for Non-Collinear Sparse Uniform Array\",\"authors\":\"Hongyong Wang;Xiaolong Chen;Weibo Deng;Caisheng Zhang;Yonghua Xue\",\"doi\":\"10.1109/LSP.2024.3510462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"206-210\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772396/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772396/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

传统的稀疏均匀阵列是由多个相同的严格共线均匀线性阵列组成的。通过调整子阵列之间的基线长度,阵列孔径可以任意增大,从而大大提高了到达方向(DOA)估计的精度。然而,在实际应用中,由于地理限制,要满足严格的共线性要求是一项挑战。为了解决这一问题,本文提出了非共线稀疏均匀阵列(NCSUA)模型,以减轻非理想地形的影响,提高该模型的实用性。然后提出了一种新的估计算法来解决NCSUA中的角度模糊问题,有效地实现了高精度的DOA估计。数值仿真结果表明,采用该消模糊算法的NCSUA在DOA估计性能和实际应用方面均优于传统的SUA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Accuracy DOA Estimation for Non-Collinear Sparse Uniform Array
Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信