{"title":"非共线稀疏均匀阵列的高精度方位估计","authors":"Hongyong Wang;Xiaolong Chen;Weibo Deng;Caisheng Zhang;Yonghua Xue","doi":"10.1109/LSP.2024.3510462","DOIUrl":null,"url":null,"abstract":"Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"206-210"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Accuracy DOA Estimation for Non-Collinear Sparse Uniform Array\",\"authors\":\"Hongyong Wang;Xiaolong Chen;Weibo Deng;Caisheng Zhang;Yonghua Xue\",\"doi\":\"10.1109/LSP.2024.3510462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"206-210\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772396/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772396/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Accuracy DOA Estimation for Non-Collinear Sparse Uniform Array
Conventional sparse uniform arrays (SUAs) is composed of multiple identical and rigorously collinear uniform linear arrays. By adjusting the baseline length between the subarrays, the array aperture can be arbitrarily large, thus substantially improving the accuracy of the direction-of-arrival (DOA) estimation. However, in practical applications, it is challenging to meet the strict collinearity requirement due to geographical constraints. In this letter, to address this problem, we propose the non-collinear sparse uniform array (NCSUA) model to mitigate the influence of the non-ideal terrain and enhance the practicality of the SUA. A novel estimation algorithm is then proposed to resolve the angle ambiguity in NCSUA and effectively achieve high-accuracy DOA estimation. Compared with the conventional SUA, numerical simulation results demonstrate the superiority of NCSUA employing the new de-ambiguity algorithm in DOA estimation performance and practical applications.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.