掺δβ-(AlxGa1-x)₂O₃/Ga₂O₃金属绝缘体半导体高电子迁移率晶体管的热电设计

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhenguang Shao;Mengting Shao;Guang Qiao;Xuekun Hong;Hailin Yu;Xifeng Yang;Haifan You;Dunjun Chen;Changjiang Liu;Yushen Liu
{"title":"掺δβ-(AlxGa1-x)₂O₃/Ga₂O₃金属绝缘体半导体高电子迁移率晶体管的热电设计","authors":"Zhenguang Shao;Mengting Shao;Guang Qiao;Xuekun Hong;Hailin Yu;Xifeng Yang;Haifan You;Dunjun Chen;Changjiang Liu;Yushen Liu","doi":"10.1109/JSEN.2024.3491179","DOIUrl":null,"url":null,"abstract":"This work presents thermoelectric (TE) devices design of delta-doped \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-(AlxGa\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\n)2O3/Ga2O3 metal insulator semiconductor high electron mobility transistors (MIS-HEMTs) using TCAD simulations. The TE properties of devices were comprehensively investigated with various temperature, gate voltages, gate lengths, delta-doping concentrations, and positions. With high delta-doping concentrations, a parasitic current channel is induced and that reduces electron chemical potential, resulting in high conductivity, a low Seebeck coefficient, and a reduced turn on voltage. Moving delta-doping positions closer to the \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-(AlxGa\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\n)2O3/Ga2O3 interface enhances the concentration of the 2-D electron gas (2DEG), which screens the strong polar optical-phonon scattering and improves 2DEG mobility. For delta-doping positions at 1 nm, the power factor is improved due to quantum effect and energy filter effect, allowing the trade-off relationship between \n<inline-formula> <tex-math>$\\sigma $ </tex-math></inline-formula>\n and S to be mitigated. Expanding gate lengths increases channel electron temperature at gate edge near drain side. These results provide valuable insights and crucial guidance for the design of high-performance \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-(AlxGa\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\n)2O3/Ga2O3 MIS-HEMTs for TE and temperature sensing applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"40446-40453"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric Design of Delta-Doped β-(AlxGa1–x)₂O₃/Ga₂O₃ Metal Insulator Semiconductor High-Electron Mobility Transistors\",\"authors\":\"Zhenguang Shao;Mengting Shao;Guang Qiao;Xuekun Hong;Hailin Yu;Xifeng Yang;Haifan You;Dunjun Chen;Changjiang Liu;Yushen Liu\",\"doi\":\"10.1109/JSEN.2024.3491179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents thermoelectric (TE) devices design of delta-doped \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-(AlxGa\\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\\n)2O3/Ga2O3 metal insulator semiconductor high electron mobility transistors (MIS-HEMTs) using TCAD simulations. The TE properties of devices were comprehensively investigated with various temperature, gate voltages, gate lengths, delta-doping concentrations, and positions. With high delta-doping concentrations, a parasitic current channel is induced and that reduces electron chemical potential, resulting in high conductivity, a low Seebeck coefficient, and a reduced turn on voltage. Moving delta-doping positions closer to the \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-(AlxGa\\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\\n)2O3/Ga2O3 interface enhances the concentration of the 2-D electron gas (2DEG), which screens the strong polar optical-phonon scattering and improves 2DEG mobility. For delta-doping positions at 1 nm, the power factor is improved due to quantum effect and energy filter effect, allowing the trade-off relationship between \\n<inline-formula> <tex-math>$\\\\sigma $ </tex-math></inline-formula>\\n and S to be mitigated. Expanding gate lengths increases channel electron temperature at gate edge near drain side. These results provide valuable insights and crucial guidance for the design of high-performance \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-(AlxGa\\n<inline-formula> <tex-math>$_{{1}-{x}}$ </tex-math></inline-formula>\\n)2O3/Ga2O3 MIS-HEMTs for TE and temperature sensing applications.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 24\",\"pages\":\"40446-40453\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750270/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10750270/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 TCAD 仿真,介绍了掺δ $\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 金属绝缘体半导体高电子迁移率晶体管(MIS-HEMT)的热电(TE)器件设计。在不同温度、栅极电压、栅极长度、三角掺杂浓度和位置条件下,对器件的 TE 特性进行了全面研究。掺杂浓度越高,寄生电流通道就越大,电子化学势就越低,从而产生高电导率、低塞贝克系数和较低的开启电压。将三角掺杂位置移近$\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 界面,可提高二维电子气体(2DEG)的浓度,从而屏蔽强极性光-声子散射并提高 2DEG 的迁移率。对于 1 nm 的三角掺杂位置,由于量子效应和能量滤波效应,功率因数得到改善,从而缓解了 $\sigma $ 和 S 之间的权衡关系。扩大栅极长度会增加栅极边缘靠近漏极侧的沟道电子温度。这些结果为设计用于 TE 和温度传感应用的高性能 $\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 MIS-HEMT 提供了宝贵的见解和重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermoelectric Design of Delta-Doped β-(AlxGa1–x)₂O₃/Ga₂O₃ Metal Insulator Semiconductor High-Electron Mobility Transistors
This work presents thermoelectric (TE) devices design of delta-doped $\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 metal insulator semiconductor high electron mobility transistors (MIS-HEMTs) using TCAD simulations. The TE properties of devices were comprehensively investigated with various temperature, gate voltages, gate lengths, delta-doping concentrations, and positions. With high delta-doping concentrations, a parasitic current channel is induced and that reduces electron chemical potential, resulting in high conductivity, a low Seebeck coefficient, and a reduced turn on voltage. Moving delta-doping positions closer to the $\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 interface enhances the concentration of the 2-D electron gas (2DEG), which screens the strong polar optical-phonon scattering and improves 2DEG mobility. For delta-doping positions at 1 nm, the power factor is improved due to quantum effect and energy filter effect, allowing the trade-off relationship between $\sigma $ and S to be mitigated. Expanding gate lengths increases channel electron temperature at gate edge near drain side. These results provide valuable insights and crucial guidance for the design of high-performance $\beta $ -(AlxGa $_{{1}-{x}}$ )2O3/Ga2O3 MIS-HEMTs for TE and temperature sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信