模糊规则仿真网络的等效分段导数自适应控制及灾难性遗忘学习的缓解

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Chidentree Treesatayapun
{"title":"模糊规则仿真网络的等效分段导数自适应控制及灾难性遗忘学习的缓解","authors":"Chidentree Treesatayapun","doi":"10.1109/TSMC.2024.3490372","DOIUrl":null,"url":null,"abstract":"This article presents a novel adaptive control approach for a class of unknown discrete-time systems using piecewise derivatives derived from experimentally obtained input-output characteristics of the controlled plant. The control law is formulated using a multi-input fuzzy rules emulated network (MiFREN). The learning law is developed to address the issue of catastrophic forgetting, in alignment with the proposed information matrix. Closed-loop analysis demonstrates convergence of the tracking error and weight parameters under feasible conditions. Validation through experiments with a DC-motor torque control system, alongside comparative controllers, demonstrates the superior tracking performance of the proposed method and its effective mitigation of forgetting during tracking tasks.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 1","pages":"758-767"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent Piecewise Derivative Adaptive Control With Fuzzy Rules Emulated Network and Mitigation of Catastrophic Forgetting Learning\",\"authors\":\"Chidentree Treesatayapun\",\"doi\":\"10.1109/TSMC.2024.3490372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel adaptive control approach for a class of unknown discrete-time systems using piecewise derivatives derived from experimentally obtained input-output characteristics of the controlled plant. The control law is formulated using a multi-input fuzzy rules emulated network (MiFREN). The learning law is developed to address the issue of catastrophic forgetting, in alignment with the proposed information matrix. Closed-loop analysis demonstrates convergence of the tracking error and weight parameters under feasible conditions. Validation through experiments with a DC-motor torque control system, alongside comparative controllers, demonstrates the superior tracking performance of the proposed method and its effective mitigation of forgetting during tracking tasks.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 1\",\"pages\":\"758-767\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752413/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752413/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的自适应控制方法,用于一类未知的离散时间系统,使用由实验得到的被控对象的输入输出特性的分段导数。采用多输入模糊规则仿真网络(MiFREN)制定控制律。学习法则的发展是为了解决灾难性遗忘的问题,与所提出的信息矩阵保持一致。闭环分析证明了在可行条件下跟踪误差和权参数的收敛性。通过直流电机转矩控制系统的实验验证,以及比较控制器,证明了所提出的方法具有优越的跟踪性能,并有效地减轻了跟踪任务中的遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivalent Piecewise Derivative Adaptive Control With Fuzzy Rules Emulated Network and Mitigation of Catastrophic Forgetting Learning
This article presents a novel adaptive control approach for a class of unknown discrete-time systems using piecewise derivatives derived from experimentally obtained input-output characteristics of the controlled plant. The control law is formulated using a multi-input fuzzy rules emulated network (MiFREN). The learning law is developed to address the issue of catastrophic forgetting, in alignment with the proposed information matrix. Closed-loop analysis demonstrates convergence of the tracking error and weight parameters under feasible conditions. Validation through experiments with a DC-motor torque control system, alongside comparative controllers, demonstrates the superior tracking performance of the proposed method and its effective mitigation of forgetting during tracking tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信