基于动态词段级词汇关联提取的生成语言隐写通用隐写分析

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Songbin Li;Hui Du;Jingang Wang
{"title":"基于动态词段级词汇关联提取的生成语言隐写通用隐写分析","authors":"Songbin Li;Hui Du;Jingang Wang","doi":"10.1109/LSP.2024.3510457","DOIUrl":null,"url":null,"abstract":"In scenarios where steganographic texts from various steganographic domains generated by different generative steganography algorithms are mixed, most existing linguistic steganalysis methods lack corresponding network structures designed to account for the differences in steganographic texts from different domains, leading to the potential for further improvement in their general detection performance. To address the above issue, we propose a general generative linguistic steganalysis method based on the basic idea of dynamically extracting lexical association features of different steganographic domains at the segment level. We utilize dynamic-static text feature matrix to construct a word importance semantic encoding module to mine steganography-sensitive word features of different steganographic domains. Based on the obtained features, we propose a word correlation multi-scale perception module to focus on the segment-level lexical association changes caused by secret information embedding in different domains. Experimental results show that this method can improve the detection accuracy of existing mainstream linguistic steganalysis methods in various mixed steganography scenarios.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"191-195"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Steganalysis of Generative Linguistic Steganography Based on Dynamic Segment-Level Lexical Association Extraction\",\"authors\":\"Songbin Li;Hui Du;Jingang Wang\",\"doi\":\"10.1109/LSP.2024.3510457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In scenarios where steganographic texts from various steganographic domains generated by different generative steganography algorithms are mixed, most existing linguistic steganalysis methods lack corresponding network structures designed to account for the differences in steganographic texts from different domains, leading to the potential for further improvement in their general detection performance. To address the above issue, we propose a general generative linguistic steganalysis method based on the basic idea of dynamically extracting lexical association features of different steganographic domains at the segment level. We utilize dynamic-static text feature matrix to construct a word importance semantic encoding module to mine steganography-sensitive word features of different steganographic domains. Based on the obtained features, we propose a word correlation multi-scale perception module to focus on the segment-level lexical association changes caused by secret information embedding in different domains. Experimental results show that this method can improve the detection accuracy of existing mainstream linguistic steganalysis methods in various mixed steganography scenarios.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"191-195\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772620/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772620/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在由不同生成隐写算法生成的不同隐写域的隐写文本混合的情况下,大多数现有的语言隐写分析方法缺乏相应的网络结构来考虑来自不同域的隐写文本的差异,从而导致其总体检测性能的进一步提高。为了解决上述问题,我们提出了一种基于分段级动态提取不同隐写域词汇关联特征的通用生成语言隐写方法。​基于所获得的特征,我们提出了一个词相关多尺度感知模块,以关注由于在不同领域中嵌入秘密信息而引起的词段级词汇关联变化。实验结果表明,在各种混合隐写场景下,该方法可以提高现有主流语言隐写方法的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Steganalysis of Generative Linguistic Steganography Based on Dynamic Segment-Level Lexical Association Extraction
In scenarios where steganographic texts from various steganographic domains generated by different generative steganography algorithms are mixed, most existing linguistic steganalysis methods lack corresponding network structures designed to account for the differences in steganographic texts from different domains, leading to the potential for further improvement in their general detection performance. To address the above issue, we propose a general generative linguistic steganalysis method based on the basic idea of dynamically extracting lexical association features of different steganographic domains at the segment level. We utilize dynamic-static text feature matrix to construct a word importance semantic encoding module to mine steganography-sensitive word features of different steganographic domains. Based on the obtained features, we propose a word correlation multi-scale perception module to focus on the segment-level lexical association changes caused by secret information embedding in different domains. Experimental results show that this method can improve the detection accuracy of existing mainstream linguistic steganalysis methods in various mixed steganography scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信