考虑气候影响的可再生能源为主电网输电扩展规划

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jin Lu;Xingpeng Li
{"title":"考虑气候影响的可再生能源为主电网输电扩展规划","authors":"Jin Lu;Xingpeng Li","doi":"10.35833/MPCE.2023.000990","DOIUrl":null,"url":null,"abstract":"As renewable energy is becoming the major resource in future power grids, the weather and climate can have a higher impact on grid reliability. Transmission expansion planning (TEP) has the potential to reinforce the power transfer capability of a transmission network for climate-impacted power grids. In this paper, we propose a systematic TEP procedure for renewable-energy-dominated power grids considering climate impact (CI). Particularly, this paper develops an improved model for TEP considering climate impact (TEP-CI) and evaluates the reliability of power grid with the obtained transmission investment plan. Firstly, we create climate-impacted spatio-temporal future power grid data to facilitate the study of TEP-CI, which include the future climate-dependent renewable power generation as well as the dynamic line rating profiles of the Texas 123-bus backbone transmission (TX-123BT) system. Secondly, the TEP-CI model is proposed, which considers the variation in renewable power generation and dynamic line rating, and the investment plan for future TX-123BT system is obtained. Thirdly, a customized security-constrained unit commitment (SCUC) is presented specifically for climate-impacted power grids. The reliability of future power grid in various investment scenarios is analyzed based on the daily operation conditions from SCUC simulations. The whole procedure presented in this paper enables numerical studies on power grid planning considering climate impact. It can also serve as a benchmark for other studies of the TEP-CI model and its performance evaluation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1737-1748"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630585","citationCount":"0","resultStr":"{\"title\":\"Transmission Expansion Planning for Renewable-Energy-Dominated Power Grids Considering Climate Impact\",\"authors\":\"Jin Lu;Xingpeng Li\",\"doi\":\"10.35833/MPCE.2023.000990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As renewable energy is becoming the major resource in future power grids, the weather and climate can have a higher impact on grid reliability. Transmission expansion planning (TEP) has the potential to reinforce the power transfer capability of a transmission network for climate-impacted power grids. In this paper, we propose a systematic TEP procedure for renewable-energy-dominated power grids considering climate impact (CI). Particularly, this paper develops an improved model for TEP considering climate impact (TEP-CI) and evaluates the reliability of power grid with the obtained transmission investment plan. Firstly, we create climate-impacted spatio-temporal future power grid data to facilitate the study of TEP-CI, which include the future climate-dependent renewable power generation as well as the dynamic line rating profiles of the Texas 123-bus backbone transmission (TX-123BT) system. Secondly, the TEP-CI model is proposed, which considers the variation in renewable power generation and dynamic line rating, and the investment plan for future TX-123BT system is obtained. Thirdly, a customized security-constrained unit commitment (SCUC) is presented specifically for climate-impacted power grids. The reliability of future power grid in various investment scenarios is analyzed based on the daily operation conditions from SCUC simulations. The whole procedure presented in this paper enables numerical studies on power grid planning considering climate impact. It can also serve as a benchmark for other studies of the TEP-CI model and its performance evaluation.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 6\",\"pages\":\"1737-1748\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630585\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10630585/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10630585/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源成为未来电网的主要资源,天气和气候对电网可靠性的影响会越来越大。输电扩展规划(TEP)有可能加强受气候影响电网的输电网络的输电能力。在本文中,我们提出了一个考虑气候影响(CI)的以可再生能源为主的电网系统的TEP程序。特别是,本文开发了一个考虑气候影响的TEP改进模型(TEP- ci),并利用得到的输电投资计划对电网的可靠性进行评估。首先,我们创建了受气候影响的未来电网时空数据,以促进TEP-CI的研究,其中包括未来气候依赖的可再生能源发电以及德克萨斯州123总线骨干输电(TX-123BT)系统的动态线路额定曲线。其次,提出了考虑可再生能源发电量变化和动态线路额定值的TEP-CI模型,得到了未来TX-123BT系统的投资计划;第三,针对受气候影响的电网,提出了一种定制化的安全约束单元承诺(SCUC)。基于scc仿真,分析了未来电网在各种投资情景下的可靠性。本文提出的整个过程使考虑气候影响的电网规划的数值研究成为可能。也可为其他TEP-CI模型及其绩效评价的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmission Expansion Planning for Renewable-Energy-Dominated Power Grids Considering Climate Impact
As renewable energy is becoming the major resource in future power grids, the weather and climate can have a higher impact on grid reliability. Transmission expansion planning (TEP) has the potential to reinforce the power transfer capability of a transmission network for climate-impacted power grids. In this paper, we propose a systematic TEP procedure for renewable-energy-dominated power grids considering climate impact (CI). Particularly, this paper develops an improved model for TEP considering climate impact (TEP-CI) and evaluates the reliability of power grid with the obtained transmission investment plan. Firstly, we create climate-impacted spatio-temporal future power grid data to facilitate the study of TEP-CI, which include the future climate-dependent renewable power generation as well as the dynamic line rating profiles of the Texas 123-bus backbone transmission (TX-123BT) system. Secondly, the TEP-CI model is proposed, which considers the variation in renewable power generation and dynamic line rating, and the investment plan for future TX-123BT system is obtained. Thirdly, a customized security-constrained unit commitment (SCUC) is presented specifically for climate-impacted power grids. The reliability of future power grid in various investment scenarios is analyzed based on the daily operation conditions from SCUC simulations. The whole procedure presented in this paper enables numerical studies on power grid planning considering climate impact. It can also serve as a benchmark for other studies of the TEP-CI model and its performance evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信