Kangshi Wang;Jieming Ma;Xiao Lu;Jingyi Wang;Ka Lok Man;Kaizhu Huang;Xiaowei Huang
{"title":"基于虚拟现实的遮阳模式识别与光伏系统交互式全局最大功率点跟踪","authors":"Kangshi Wang;Jieming Ma;Xiao Lu;Jingyi Wang;Ka Lok Man;Kaizhu Huang;Xiaowei Huang","doi":"10.35833/MPCE.2023.000869","DOIUrl":null,"url":null,"abstract":"The performance of photovoltaic (PV) systems is influenced by various factors, including atmospheric conditions, geographical locations, and spatial and temporal characteristics. Consequently, the optimization of PV systems relies heavily on the global maximum power point tracking (GMPPT) methods. In this paper, we adopt virtual reality (VR) technology to visualize PV entities and simulate their performances. The integration of VR technology introduces a novel spatial and temporal dimension to the shading pattern recognition (SPR) of PV systems, thereby enhancing their descriptive capabilities. Furthermore, we introduce an interactive GMPPT (IGMPPT) method based on VR technology. This method leverages interactive search techniques to narrow down search regions, thereby enhancing the search efficiency. Experimental results demonstrate the effectiveness of the proposed IGMPPT in representing the spatial and temporal characteristics of PV systems and improving the efficiency of GMPPT.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1849-1858"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541885","citationCount":"0","resultStr":"{\"title\":\"Virtual Reality Based Shading Pattern Recognition and Interactive Global Maximum Power Point Tracking in Photovoltaic Systems\",\"authors\":\"Kangshi Wang;Jieming Ma;Xiao Lu;Jingyi Wang;Ka Lok Man;Kaizhu Huang;Xiaowei Huang\",\"doi\":\"10.35833/MPCE.2023.000869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of photovoltaic (PV) systems is influenced by various factors, including atmospheric conditions, geographical locations, and spatial and temporal characteristics. Consequently, the optimization of PV systems relies heavily on the global maximum power point tracking (GMPPT) methods. In this paper, we adopt virtual reality (VR) technology to visualize PV entities and simulate their performances. The integration of VR technology introduces a novel spatial and temporal dimension to the shading pattern recognition (SPR) of PV systems, thereby enhancing their descriptive capabilities. Furthermore, we introduce an interactive GMPPT (IGMPPT) method based on VR technology. This method leverages interactive search techniques to narrow down search regions, thereby enhancing the search efficiency. Experimental results demonstrate the effectiveness of the proposed IGMPPT in representing the spatial and temporal characteristics of PV systems and improving the efficiency of GMPPT.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 6\",\"pages\":\"1849-1858\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541885\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10541885/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10541885/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Virtual Reality Based Shading Pattern Recognition and Interactive Global Maximum Power Point Tracking in Photovoltaic Systems
The performance of photovoltaic (PV) systems is influenced by various factors, including atmospheric conditions, geographical locations, and spatial and temporal characteristics. Consequently, the optimization of PV systems relies heavily on the global maximum power point tracking (GMPPT) methods. In this paper, we adopt virtual reality (VR) technology to visualize PV entities and simulate their performances. The integration of VR technology introduces a novel spatial and temporal dimension to the shading pattern recognition (SPR) of PV systems, thereby enhancing their descriptive capabilities. Furthermore, we introduce an interactive GMPPT (IGMPPT) method based on VR technology. This method leverages interactive search techniques to narrow down search regions, thereby enhancing the search efficiency. Experimental results demonstrate the effectiveness of the proposed IGMPPT in representing the spatial and temporal characteristics of PV systems and improving the efficiency of GMPPT.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.