基于二维域自适应随机组态网络的迁移学习软传感器建模

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaogang Deng;Jing Zhang;Lumeng Huang;Yue Zhao;Ping Wang
{"title":"基于二维域自适应随机组态网络的迁移学习软传感器建模","authors":"Xiaogang Deng;Jing Zhang;Lumeng Huang;Yue Zhao;Ping Wang","doi":"10.1109/JSEN.2024.3487840","DOIUrl":null,"url":null,"abstract":"Stochastic configuration networks (SCNs) are widely used in the field of soft sensor modeling due to their advantages of good generalization performance and automatic model structure determination. The classical SCN-based soft sensors are usually effective when industrial processes only involve a single operation mode. In practical applications, however, operation mode variations are often seen because of many factors, including market demands, raw material changes, ambient temperatures, etc. In the historical modes, abundant labeled samples are collected. In the new operation mode, the labeled samples are, however, very scarce and cannot sufficiently support the effective training of soft sensor models. How to make full use of the historical modes to assist the soft sensor modeling of the new mode is, therefore, a meaningful and challenging problem. To handle this problem, this article proposes a transfer learning soft sensor modeling method based on 2-D domain-adaption SCN (TD-DASCN). In this method, a domain adaption SCN modeling framework is designed for transfer learning soft sensor development by fusing the abundant labeled samples from historical modes (source domain) and a few labeled samples from new modes (target domain). The feature alignment procedure is performed by using geodesic flow kernel method to reduce data distribution difference between source and target domains. For the sake of avoiding the possible negative transfer phenomenon, the source domain loss function is constrained according to the degree of contribution of the source domain samples in the transfer. Last, the effectiveness of the proposed method is verified by two industrial cases. Compared with the basic DASCN soft sensor method, the proposed method can reduce the average prediction RMSE value by 30.0% and 9.1% in the two tested cases, respectively.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"42511-42522"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning Soft Sensor Modeling Based on 2-D Domain-Adaption Stochastic Configuration Network\",\"authors\":\"Xiaogang Deng;Jing Zhang;Lumeng Huang;Yue Zhao;Ping Wang\",\"doi\":\"10.1109/JSEN.2024.3487840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic configuration networks (SCNs) are widely used in the field of soft sensor modeling due to their advantages of good generalization performance and automatic model structure determination. The classical SCN-based soft sensors are usually effective when industrial processes only involve a single operation mode. In practical applications, however, operation mode variations are often seen because of many factors, including market demands, raw material changes, ambient temperatures, etc. In the historical modes, abundant labeled samples are collected. In the new operation mode, the labeled samples are, however, very scarce and cannot sufficiently support the effective training of soft sensor models. How to make full use of the historical modes to assist the soft sensor modeling of the new mode is, therefore, a meaningful and challenging problem. To handle this problem, this article proposes a transfer learning soft sensor modeling method based on 2-D domain-adaption SCN (TD-DASCN). In this method, a domain adaption SCN modeling framework is designed for transfer learning soft sensor development by fusing the abundant labeled samples from historical modes (source domain) and a few labeled samples from new modes (target domain). The feature alignment procedure is performed by using geodesic flow kernel method to reduce data distribution difference between source and target domains. For the sake of avoiding the possible negative transfer phenomenon, the source domain loss function is constrained according to the degree of contribution of the source domain samples in the transfer. Last, the effectiveness of the proposed method is verified by two industrial cases. Compared with the basic DASCN soft sensor method, the proposed method can reduce the average prediction RMSE value by 30.0% and 9.1% in the two tested cases, respectively.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 24\",\"pages\":\"42511-42522\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742281/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10742281/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随机组态网络由于具有良好的泛化性能和自动确定模型结构等优点,在软测量建模领域得到了广泛的应用。传统的基于scn的软传感器通常在工业过程只涉及单一操作模式时有效。但在实际应用中,由于市场需求、原料变化、环境温度等多种因素,往往会出现运行方式的变化。在历史模式下,大量的标记样本被收集。然而,在新的操作模式下,标记的样本非常稀缺,不能充分支持软传感器模型的有效训练。因此,如何充分利用历史模式来辅助新模式的软测量建模是一个有意义且具有挑战性的问题。为了解决这一问题,本文提出了一种基于二维域自适应SCN (TD-DASCN)的迁移学习软传感器建模方法。该方法通过融合历史模式(源域)的大量标记样本和新模式(目标域)的少量标记样本,设计了一个领域自适应的SCN建模框架,用于迁移学习软传感器的开发。采用测地线流核方法进行特征对齐,以减小源域和目标域之间的数据分布差异。为了避免可能出现的负传递现象,根据源域样本在传递中的贡献程度对源域损失函数进行约束。最后,通过两个工业实例验证了该方法的有效性。与基本的DASCN软测量方法相比,在两个测试案例中,本文方法的平均预测RMSE值分别降低了30.0%和9.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning Soft Sensor Modeling Based on 2-D Domain-Adaption Stochastic Configuration Network
Stochastic configuration networks (SCNs) are widely used in the field of soft sensor modeling due to their advantages of good generalization performance and automatic model structure determination. The classical SCN-based soft sensors are usually effective when industrial processes only involve a single operation mode. In practical applications, however, operation mode variations are often seen because of many factors, including market demands, raw material changes, ambient temperatures, etc. In the historical modes, abundant labeled samples are collected. In the new operation mode, the labeled samples are, however, very scarce and cannot sufficiently support the effective training of soft sensor models. How to make full use of the historical modes to assist the soft sensor modeling of the new mode is, therefore, a meaningful and challenging problem. To handle this problem, this article proposes a transfer learning soft sensor modeling method based on 2-D domain-adaption SCN (TD-DASCN). In this method, a domain adaption SCN modeling framework is designed for transfer learning soft sensor development by fusing the abundant labeled samples from historical modes (source domain) and a few labeled samples from new modes (target domain). The feature alignment procedure is performed by using geodesic flow kernel method to reduce data distribution difference between source and target domains. For the sake of avoiding the possible negative transfer phenomenon, the source domain loss function is constrained according to the degree of contribution of the source domain samples in the transfer. Last, the effectiveness of the proposed method is verified by two industrial cases. Compared with the basic DASCN soft sensor method, the proposed method can reduce the average prediction RMSE value by 30.0% and 9.1% in the two tested cases, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信