Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu
{"title":"交直流电力系统并联输电通道配电及维护计划优化","authors":"Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu","doi":"10.35833/MPCE.2023.001028","DOIUrl":null,"url":null,"abstract":"As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2030-2044"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520023","citationCount":"0","resultStr":"{\"title\":\"Optimization for Power Distribution and Maintenance Schedules of Paralleled Transmission Channels in AC/DC Power System\",\"authors\":\"Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu\",\"doi\":\"10.35833/MPCE.2023.001028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 6\",\"pages\":\"2030-2044\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520023/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10520023/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimization for Power Distribution and Maintenance Schedules of Paralleled Transmission Channels in AC/DC Power System
As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.