Ian Sequeira, Andrew Z. Barabas, Aaron H Barajas-Aguilar, Michaela G Bacani, Naoto Nakatsuji, Mikito Koshino, Takashi Taniguichi, Kenji Watanabe and Javier D. Sanchez-Yamagishi*,
{"title":"通过控制范德华器件中的异应变来控制莫伊拉西","authors":"Ian Sequeira, Andrew Z. Barabas, Aaron H Barajas-Aguilar, Michaela G Bacani, Naoto Nakatsuji, Mikito Koshino, Takashi Taniguichi, Kenji Watanabe and Javier D. Sanchez-Yamagishi*, ","doi":"10.1021/acs.nanolett.4c0420110.1021/acs.nanolett.4c04201","DOIUrl":null,"url":null,"abstract":"<p >Van der Waals (vdW) moirés offer tunable superlattices that can strongly manipulate electronic properties. We demonstrate the <i>in situ</i> manipulation of moiré superlattices via heterostrain control in a vdW device. By straining a graphene layer relative to its hexagonal boron nitride substrate, we modify the shape and size of the moiré. Our sliding-based technique achieves uniaxial heterostrain values exceeding 1%, resulting in distorted moirés values that are larger than those achievable without strain. The stretched moiré is evident in transport measurements, resulting in shifted superlattice resistance peaks and Landau fans, consistent with an enlarged superlattice unit cell. Electronic structure calculations reveal how heterostrain shrinks and distorts the moiré Brillouin zone, resulting in a reduced electronic bandwidth as well as the appearance of highly anisotropic and quasi-one-dimensional Fermi surfaces. Our heterostrain control approach opens a wide parameter space of moiré lattices to explore beyond what is possible by twist angle control alone.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 49","pages":"15662–15667 15662–15667"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating Moirés by Controlling Heterostrain in van der Waals Devices\",\"authors\":\"Ian Sequeira, Andrew Z. Barabas, Aaron H Barajas-Aguilar, Michaela G Bacani, Naoto Nakatsuji, Mikito Koshino, Takashi Taniguichi, Kenji Watanabe and Javier D. Sanchez-Yamagishi*, \",\"doi\":\"10.1021/acs.nanolett.4c0420110.1021/acs.nanolett.4c04201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Van der Waals (vdW) moirés offer tunable superlattices that can strongly manipulate electronic properties. We demonstrate the <i>in situ</i> manipulation of moiré superlattices via heterostrain control in a vdW device. By straining a graphene layer relative to its hexagonal boron nitride substrate, we modify the shape and size of the moiré. Our sliding-based technique achieves uniaxial heterostrain values exceeding 1%, resulting in distorted moirés values that are larger than those achievable without strain. The stretched moiré is evident in transport measurements, resulting in shifted superlattice resistance peaks and Landau fans, consistent with an enlarged superlattice unit cell. Electronic structure calculations reveal how heterostrain shrinks and distorts the moiré Brillouin zone, resulting in a reduced electronic bandwidth as well as the appearance of highly anisotropic and quasi-one-dimensional Fermi surfaces. Our heterostrain control approach opens a wide parameter space of moiré lattices to explore beyond what is possible by twist angle control alone.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 49\",\"pages\":\"15662–15667 15662–15667\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04201\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulating Moirés by Controlling Heterostrain in van der Waals Devices
Van der Waals (vdW) moirés offer tunable superlattices that can strongly manipulate electronic properties. We demonstrate the in situ manipulation of moiré superlattices via heterostrain control in a vdW device. By straining a graphene layer relative to its hexagonal boron nitride substrate, we modify the shape and size of the moiré. Our sliding-based technique achieves uniaxial heterostrain values exceeding 1%, resulting in distorted moirés values that are larger than those achievable without strain. The stretched moiré is evident in transport measurements, resulting in shifted superlattice resistance peaks and Landau fans, consistent with an enlarged superlattice unit cell. Electronic structure calculations reveal how heterostrain shrinks and distorts the moiré Brillouin zone, resulting in a reduced electronic bandwidth as well as the appearance of highly anisotropic and quasi-one-dimensional Fermi surfaces. Our heterostrain control approach opens a wide parameter space of moiré lattices to explore beyond what is possible by twist angle control alone.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.