Il Hoon Song, Yu Geun Ki, Seong Jun Kim, Byeong Je Jeon, Jun Seok Yoon and Soo Jin Kim*,
{"title":"基于对称相关Kerker效应增强抗反射","authors":"Il Hoon Song, Yu Geun Ki, Seong Jun Kim, Byeong Je Jeon, Jun Seok Yoon and Soo Jin Kim*, ","doi":"10.1021/acs.nanolett.4c0486210.1021/acs.nanolett.4c04862","DOIUrl":null,"url":null,"abstract":"<p >The significance of antireflection has persisted over time due to its numerous optical applications. To achieve broadband antireflection, multiple element-based designs using graded-index films or multiresonant nanostructures have been conventionally employed. In this work, we propose an additional degree of freedom in developing antireflection by manipulating the orientation angles of nanostructures to achieve the symmetry-dependent Kerker condition. Under the excitation of multipoles in higher-order resonances, which typically complicates the interference condition, the perfect Kerker condition is demonstrated without backward leakage of power at a wavelength significantly shorter than the excitation bandwidth of electric and magnetic dipoles. Such a condition can be directly linked to the symmetry of resonators and maximized by suppressing the near-field coupling and optimizing polarization-related spatial parities. We experimentally demonstrate the symmetry-dependent Kerker condition and polarization-independent antireflection at the midwave infrared range, which has attracted increasing attention in emerging imaging and sensing fields.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 49","pages":"15852–15860 15852–15860"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Antireflection Based on a Symmetry-Dependent Kerker Effect\",\"authors\":\"Il Hoon Song, Yu Geun Ki, Seong Jun Kim, Byeong Je Jeon, Jun Seok Yoon and Soo Jin Kim*, \",\"doi\":\"10.1021/acs.nanolett.4c0486210.1021/acs.nanolett.4c04862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The significance of antireflection has persisted over time due to its numerous optical applications. To achieve broadband antireflection, multiple element-based designs using graded-index films or multiresonant nanostructures have been conventionally employed. In this work, we propose an additional degree of freedom in developing antireflection by manipulating the orientation angles of nanostructures to achieve the symmetry-dependent Kerker condition. Under the excitation of multipoles in higher-order resonances, which typically complicates the interference condition, the perfect Kerker condition is demonstrated without backward leakage of power at a wavelength significantly shorter than the excitation bandwidth of electric and magnetic dipoles. Such a condition can be directly linked to the symmetry of resonators and maximized by suppressing the near-field coupling and optimizing polarization-related spatial parities. We experimentally demonstrate the symmetry-dependent Kerker condition and polarization-independent antireflection at the midwave infrared range, which has attracted increasing attention in emerging imaging and sensing fields.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 49\",\"pages\":\"15852–15860 15852–15860\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04862\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04862","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Antireflection Based on a Symmetry-Dependent Kerker Effect
The significance of antireflection has persisted over time due to its numerous optical applications. To achieve broadband antireflection, multiple element-based designs using graded-index films or multiresonant nanostructures have been conventionally employed. In this work, we propose an additional degree of freedom in developing antireflection by manipulating the orientation angles of nanostructures to achieve the symmetry-dependent Kerker condition. Under the excitation of multipoles in higher-order resonances, which typically complicates the interference condition, the perfect Kerker condition is demonstrated without backward leakage of power at a wavelength significantly shorter than the excitation bandwidth of electric and magnetic dipoles. Such a condition can be directly linked to the symmetry of resonators and maximized by suppressing the near-field coupling and optimizing polarization-related spatial parities. We experimentally demonstrate the symmetry-dependent Kerker condition and polarization-independent antireflection at the midwave infrared range, which has attracted increasing attention in emerging imaging and sensing fields.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.