Shuang Wang, Lin Mu, Chu Wang, Xue Li, Jun Xie, Yan Shang, Hang Pu and Ming Dong*,
{"title":"微米颗粒在湍流中团聚的建模与模拟:圆柱扰动和颗粒性质的影响","authors":"Shuang Wang, Lin Mu, Chu Wang, Xue Li, Jun Xie, Yan Shang, Hang Pu and Ming Dong*, ","doi":"10.1021/acsomega.4c0644110.1021/acsomega.4c06441","DOIUrl":null,"url":null,"abstract":"<p >The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study. Our research meticulously investigated the influence of cylindrical vortex wakes on particle flow, agglomeration patterns, and the dynamics between fluids and particles. By employing a novel hybrid computational approach that integrates the discrete element method (DEM) with large Eddy simulation (LES), we were able to accurately simulate particle–particle interactions. The study focused on understanding how particles with different diameters (2, 5, 10, and 20 μm), densities (2,500, 5,000, 7,500, and 10,000 kg·m<sup>–3</sup>), and surface energies (0.01, 0.1, and 1 J·m<sup>–2</sup>) behaved within transitioning shear layer flow conditions. Our findings revealed that particles tended to congregate in areas of lower vorticity, with larger and denser particles demonstrating greater agglomeration efficiency due to their resilience against turbulent forces. Conversely, particles of lower density formed smaller agglomerates as their susceptibility to shear forces increased. Additionally, the study discovered that higher surface energies enhance adhesion, leading to the formation of larger agglomerates.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49302–49315 49302–49315"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06441","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of Micron Particle Agglomeration in a Turbulent Flow: Impact of Cylindrical Disturbance and Particle Properties\",\"authors\":\"Shuang Wang, Lin Mu, Chu Wang, Xue Li, Jun Xie, Yan Shang, Hang Pu and Ming Dong*, \",\"doi\":\"10.1021/acsomega.4c0644110.1021/acsomega.4c06441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study. Our research meticulously investigated the influence of cylindrical vortex wakes on particle flow, agglomeration patterns, and the dynamics between fluids and particles. By employing a novel hybrid computational approach that integrates the discrete element method (DEM) with large Eddy simulation (LES), we were able to accurately simulate particle–particle interactions. The study focused on understanding how particles with different diameters (2, 5, 10, and 20 μm), densities (2,500, 5,000, 7,500, and 10,000 kg·m<sup>–3</sup>), and surface energies (0.01, 0.1, and 1 J·m<sup>–2</sup>) behaved within transitioning shear layer flow conditions. Our findings revealed that particles tended to congregate in areas of lower vorticity, with larger and denser particles demonstrating greater agglomeration efficiency due to their resilience against turbulent forces. Conversely, particles of lower density formed smaller agglomerates as their susceptibility to shear forces increased. Additionally, the study discovered that higher surface energies enhance adhesion, leading to the formation of larger agglomerates.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 50\",\"pages\":\"49302–49315 49302–49315\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c06441\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06441","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling and Simulation of Micron Particle Agglomeration in a Turbulent Flow: Impact of Cylindrical Disturbance and Particle Properties
The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study. Our research meticulously investigated the influence of cylindrical vortex wakes on particle flow, agglomeration patterns, and the dynamics between fluids and particles. By employing a novel hybrid computational approach that integrates the discrete element method (DEM) with large Eddy simulation (LES), we were able to accurately simulate particle–particle interactions. The study focused on understanding how particles with different diameters (2, 5, 10, and 20 μm), densities (2,500, 5,000, 7,500, and 10,000 kg·m–3), and surface energies (0.01, 0.1, and 1 J·m–2) behaved within transitioning shear layer flow conditions. Our findings revealed that particles tended to congregate in areas of lower vorticity, with larger and denser particles demonstrating greater agglomeration efficiency due to their resilience against turbulent forces. Conversely, particles of lower density formed smaller agglomerates as their susceptibility to shear forces increased. Additionally, the study discovered that higher surface energies enhance adhesion, leading to the formation of larger agglomerates.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.