Ramla Gary, Manel Ben Salah, Taoufik Soltani, Patrizia Formoso and Souhaira Hbaieb*,
{"title":"金纳米颗粒对eNOS在鳃组织定位的影响:免疫荧光技术的进展","authors":"Ramla Gary, Manel Ben Salah, Taoufik Soltani, Patrizia Formoso and Souhaira Hbaieb*, ","doi":"10.1021/acsomega.4c0739310.1021/acsomega.4c07393","DOIUrl":null,"url":null,"abstract":"<p >This study optimizes immunofluorescence techniques using gold nanoparticles (AuNPs) to improve visualization of endothelial nitric oxide synthase (eNOS) in gill tissue. Two types of AuNP dispersions, stabilized in phosphate buffered saline (PBS) and citrate buffer (CB), were evaluated for their imaging performance. AuNPs suspended in PBS provided significantly better optical contrast due to uniform distribution and effective tissue attachment, whereas citrate-suspended AuNPs exhibited aggregation, resulting in reduced contrast. These results highlight the influence of suspension media on AuNP performance, particularly in balancing fluorescence signals to improve contrast. The PBS suspension allowed clearer visualization of eNOS, highlighting the role of AuNP compatibility in improving immunofluorescence results. This study highlights the importance of strategic selection of AuNP dispersions in contrast agent design and provides insights for advanced imaging applications where sensitivity and accurate localization of biomolecules are essential. By refining the use of AuNPs as contrast enhancers, this approach offers potential improvements in bioimaging accuracy, facilitating more precise visualization in complex tissue environments.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49530–49538 49530–49538"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07393","citationCount":"0","resultStr":"{\"title\":\"Influence of Gold Nanoparticles on eNOS Localization in Gill Tissues: Advancements in Immunofluorescence Techniques\",\"authors\":\"Ramla Gary, Manel Ben Salah, Taoufik Soltani, Patrizia Formoso and Souhaira Hbaieb*, \",\"doi\":\"10.1021/acsomega.4c0739310.1021/acsomega.4c07393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study optimizes immunofluorescence techniques using gold nanoparticles (AuNPs) to improve visualization of endothelial nitric oxide synthase (eNOS) in gill tissue. Two types of AuNP dispersions, stabilized in phosphate buffered saline (PBS) and citrate buffer (CB), were evaluated for their imaging performance. AuNPs suspended in PBS provided significantly better optical contrast due to uniform distribution and effective tissue attachment, whereas citrate-suspended AuNPs exhibited aggregation, resulting in reduced contrast. These results highlight the influence of suspension media on AuNP performance, particularly in balancing fluorescence signals to improve contrast. The PBS suspension allowed clearer visualization of eNOS, highlighting the role of AuNP compatibility in improving immunofluorescence results. This study highlights the importance of strategic selection of AuNP dispersions in contrast agent design and provides insights for advanced imaging applications where sensitivity and accurate localization of biomolecules are essential. By refining the use of AuNPs as contrast enhancers, this approach offers potential improvements in bioimaging accuracy, facilitating more precise visualization in complex tissue environments.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 50\",\"pages\":\"49530–49538 49530–49538\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07393\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c07393\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07393","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of Gold Nanoparticles on eNOS Localization in Gill Tissues: Advancements in Immunofluorescence Techniques
This study optimizes immunofluorescence techniques using gold nanoparticles (AuNPs) to improve visualization of endothelial nitric oxide synthase (eNOS) in gill tissue. Two types of AuNP dispersions, stabilized in phosphate buffered saline (PBS) and citrate buffer (CB), were evaluated for their imaging performance. AuNPs suspended in PBS provided significantly better optical contrast due to uniform distribution and effective tissue attachment, whereas citrate-suspended AuNPs exhibited aggregation, resulting in reduced contrast. These results highlight the influence of suspension media on AuNP performance, particularly in balancing fluorescence signals to improve contrast. The PBS suspension allowed clearer visualization of eNOS, highlighting the role of AuNP compatibility in improving immunofluorescence results. This study highlights the importance of strategic selection of AuNP dispersions in contrast agent design and provides insights for advanced imaging applications where sensitivity and accurate localization of biomolecules are essential. By refining the use of AuNPs as contrast enhancers, this approach offers potential improvements in bioimaging accuracy, facilitating more precise visualization in complex tissue environments.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.