在活性氧化铝上稳定Ni-CeOx双功能纳米颗粒以增强甲烷干重整的抗碳能力

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Shiqiang Wang, Dan Guo, Meng Han, Yitong Yao, Pengfei Zhang, Xuening Zhang, Jing Lv, Yong Wang, Shengping Wang and Xinbin Ma*, 
{"title":"在活性氧化铝上稳定Ni-CeOx双功能纳米颗粒以增强甲烷干重整的抗碳能力","authors":"Shiqiang Wang,&nbsp;Dan Guo,&nbsp;Meng Han,&nbsp;Yitong Yao,&nbsp;Pengfei Zhang,&nbsp;Xuening Zhang,&nbsp;Jing Lv,&nbsp;Yong Wang,&nbsp;Shengping Wang and Xinbin Ma*,&nbsp;","doi":"10.1021/acs.iecr.4c0338610.1021/acs.iecr.4c03386","DOIUrl":null,"url":null,"abstract":"<p >Syngas, an extremely meaningful chemical feedstock consisting of hydrogen and carbon monoxide, can be produced through methane dry reforming with carbon dioxide. The extensively utilized Ni-based catalysts usually suffer from coke-induced instability. Herein, we design Ni-CeO<sub><i>x</i></sub> bifunctional catalysts with different proximity and explore the influence of proximity level on anticoking performance. Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticles with intimate contact are precisely regulated through the anchoring strategy of coordination unsaturated Al<sup>3+</sup><sub>penta</sub>, which undergoes the topotactic exsolution of a Ni–Ce–O quasi-solid solution into Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticles. A trend toward easier elimination and even the absence of graphitic carbon is observed with a decreasing spatial distance between Ni and CeO<sub><i>x</i></sub>, which is attributed to the proximity between the dissociation and gasification sites of CH<sub><i>x</i></sub>* intermediates. CH<sub><i>x</i></sub>* species generated at Ni nanoparticles migrated to adjacent CeO<sub><i>x</i></sub> oxygen carriers for Ni-CeO<sub><i>x</i></sub>/Al<sub>2</sub>O<sub>3</sub> catalyst gasification with Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticle interfaces, which undergo the Mars–van Krevelen (MvK) mechanism. The exploration of the Ni-CeO<sub><i>x</i></sub> proximity provides guidance for developing efficient and durable Ni-based DRM catalysts.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 49","pages":"21279–21289 21279–21289"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Ni-CeOx Bifunctional Nanoparticles on Activated Alumina to Enhance Carbon Resistance for Dry Reforming of Methane\",\"authors\":\"Shiqiang Wang,&nbsp;Dan Guo,&nbsp;Meng Han,&nbsp;Yitong Yao,&nbsp;Pengfei Zhang,&nbsp;Xuening Zhang,&nbsp;Jing Lv,&nbsp;Yong Wang,&nbsp;Shengping Wang and Xinbin Ma*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c0338610.1021/acs.iecr.4c03386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Syngas, an extremely meaningful chemical feedstock consisting of hydrogen and carbon monoxide, can be produced through methane dry reforming with carbon dioxide. The extensively utilized Ni-based catalysts usually suffer from coke-induced instability. Herein, we design Ni-CeO<sub><i>x</i></sub> bifunctional catalysts with different proximity and explore the influence of proximity level on anticoking performance. Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticles with intimate contact are precisely regulated through the anchoring strategy of coordination unsaturated Al<sup>3+</sup><sub>penta</sub>, which undergoes the topotactic exsolution of a Ni–Ce–O quasi-solid solution into Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticles. A trend toward easier elimination and even the absence of graphitic carbon is observed with a decreasing spatial distance between Ni and CeO<sub><i>x</i></sub>, which is attributed to the proximity between the dissociation and gasification sites of CH<sub><i>x</i></sub>* intermediates. CH<sub><i>x</i></sub>* species generated at Ni nanoparticles migrated to adjacent CeO<sub><i>x</i></sub> oxygen carriers for Ni-CeO<sub><i>x</i></sub>/Al<sub>2</sub>O<sub>3</sub> catalyst gasification with Ni-CeO<sub><i>x</i></sub> bimetallic nanoparticle interfaces, which undergo the Mars–van Krevelen (MvK) mechanism. The exploration of the Ni-CeO<sub><i>x</i></sub> proximity provides guidance for developing efficient and durable Ni-based DRM catalysts.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"63 49\",\"pages\":\"21279–21289 21279–21289\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03386\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03386","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

合成气是一种极有意义的化学原料,由氢气和一氧化碳组成,可通过甲烷与二氧化碳的干重整反应生产。目前广泛使用的镍基催化剂通常存在焦炭引发的不稳定性。在此,我们设计了不同接近度的 Ni-CeOx 双功能催化剂,并探讨了接近度对防焦性能的影响。亲密接触的 Ni-CeOx 双金属纳米粒子通过配位不饱和 Al3+penta 的锚定策略进行精确调控,使 Ni-Ce-O 准固态溶液拓扑溶解为 Ni-CeOx 双金属纳米粒子。随着 Ni 和 CeOx 之间空间距离的减小,石墨碳更容易消除,甚至可以观察到没有石墨碳的趋势,这归因于 CHx* 中间体的解离和气化位点之间的接近。在镍纳米粒子上生成的 CHx* 物种迁移到相邻的 CeOx 氧载体上,通过镍-CeOx 双金属纳米粒子界面进行镍-CeOx/Al2O3 催化剂气化,其过程经历了 Mars-van Krevelen(MvK)机制。对 Ni-CeOx 接近性的探索为开发高效耐用的镍基 DRM 催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing Ni-CeOx Bifunctional Nanoparticles on Activated Alumina to Enhance Carbon Resistance for Dry Reforming of Methane

Stabilizing Ni-CeOx Bifunctional Nanoparticles on Activated Alumina to Enhance Carbon Resistance for Dry Reforming of Methane

Syngas, an extremely meaningful chemical feedstock consisting of hydrogen and carbon monoxide, can be produced through methane dry reforming with carbon dioxide. The extensively utilized Ni-based catalysts usually suffer from coke-induced instability. Herein, we design Ni-CeOx bifunctional catalysts with different proximity and explore the influence of proximity level on anticoking performance. Ni-CeOx bimetallic nanoparticles with intimate contact are precisely regulated through the anchoring strategy of coordination unsaturated Al3+penta, which undergoes the topotactic exsolution of a Ni–Ce–O quasi-solid solution into Ni-CeOx bimetallic nanoparticles. A trend toward easier elimination and even the absence of graphitic carbon is observed with a decreasing spatial distance between Ni and CeOx, which is attributed to the proximity between the dissociation and gasification sites of CHx* intermediates. CHx* species generated at Ni nanoparticles migrated to adjacent CeOx oxygen carriers for Ni-CeOx/Al2O3 catalyst gasification with Ni-CeOx bimetallic nanoparticle interfaces, which undergo the Mars–van Krevelen (MvK) mechanism. The exploration of the Ni-CeOx proximity provides guidance for developing efficient and durable Ni-based DRM catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信