Praveen Jeeva, Anusuyadevi Muthusamy and Jayachandran Kesavan swaminathan*,
{"title":"解读动脉粥样硬化蛋白的结构动力学:来自山楂植物化学物质的见解,介导靶向动脉粥样硬化蛋白的功能和结构变化","authors":"Praveen Jeeva, Anusuyadevi Muthusamy and Jayachandran Kesavan swaminathan*, ","doi":"10.1021/acsomega.4c0497510.1021/acsomega.4c04975","DOIUrl":null,"url":null,"abstract":"<p >Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from <i>Crataegus oxyacantha</i> (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein–ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 49","pages":"48159–48172 48159–48172"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04975","citationCount":"0","resultStr":"{\"title\":\"Deciphering Structural Dynamics of Atherosclerosis Proteins: Insights from Crataegus oxyacantha Phytochemicals that Interceded Functional and Structural Changes in Targeted Atherosclerotic Proteins\",\"authors\":\"Praveen Jeeva, Anusuyadevi Muthusamy and Jayachandran Kesavan swaminathan*, \",\"doi\":\"10.1021/acsomega.4c0497510.1021/acsomega.4c04975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from <i>Crataegus oxyacantha</i> (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein–ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 49\",\"pages\":\"48159–48172 48159–48172\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04975\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c04975\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c04975","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deciphering Structural Dynamics of Atherosclerosis Proteins: Insights from Crataegus oxyacantha Phytochemicals that Interceded Functional and Structural Changes in Targeted Atherosclerotic Proteins
Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from Crataegus oxyacantha (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein–ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.