Shuoyu Wang, Xiongfeng Lin, Weizhou Chai, Wen Yu, Binglin Zhang, Li Li* and Hongkang Wang*,
{"title":"掺杂 N 的多孔碳上装饰的硫化铁量子点用于锂离子/钠离子存储","authors":"Shuoyu Wang, Xiongfeng Lin, Weizhou Chai, Wen Yu, Binglin Zhang, Li Li* and Hongkang Wang*, ","doi":"10.1021/acsanm.4c0495110.1021/acsanm.4c04951","DOIUrl":null,"url":null,"abstract":"<p >Iron sulfide is considered a potential anode material for lithium- and sodium-ion batteries (LIBs/SIBs) in view of its natural abundance and high theoretical specific capacity. Nevertheless, a large volume expansion and relatively poor electronic conductivity have hindered its application. Herein, a unique composite with iron sulfide quantum dots decorated on N-doped porous carbon hierarchical frameworks (FeS@NC) is constructed via a vulcanization-carbonization strategy. The confined size of iron sulfide dots and the designed porous structure of carbon frameworks effectively alleviate the volume expansion issue upon ion insertion, while the N-doped carbon matrix efficiently enhances the electrode conductivity. Consequently, the presented FeS@NC composite exhibits excellent lithium/sodium storage performance. For LIBs, the FeS@NC electrode shows discharge capacities of 844.2 mAh/g at 0.5 A/g after 300 cycles and 578.9 mAh/g at 5 A/g in the rate test. Moreover, it delivers a high discharge capacity of 460.7 mAh/g after 350 cycles at 1 A/g for SIBs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26970–26977 26970–26977"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Sulfide Quantum Dots Decorated on Porous N-Doped Carbon for Lithium/Sodium-Ion Storage\",\"authors\":\"Shuoyu Wang, Xiongfeng Lin, Weizhou Chai, Wen Yu, Binglin Zhang, Li Li* and Hongkang Wang*, \",\"doi\":\"10.1021/acsanm.4c0495110.1021/acsanm.4c04951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Iron sulfide is considered a potential anode material for lithium- and sodium-ion batteries (LIBs/SIBs) in view of its natural abundance and high theoretical specific capacity. Nevertheless, a large volume expansion and relatively poor electronic conductivity have hindered its application. Herein, a unique composite with iron sulfide quantum dots decorated on N-doped porous carbon hierarchical frameworks (FeS@NC) is constructed via a vulcanization-carbonization strategy. The confined size of iron sulfide dots and the designed porous structure of carbon frameworks effectively alleviate the volume expansion issue upon ion insertion, while the N-doped carbon matrix efficiently enhances the electrode conductivity. Consequently, the presented FeS@NC composite exhibits excellent lithium/sodium storage performance. For LIBs, the FeS@NC electrode shows discharge capacities of 844.2 mAh/g at 0.5 A/g after 300 cycles and 578.9 mAh/g at 5 A/g in the rate test. Moreover, it delivers a high discharge capacity of 460.7 mAh/g after 350 cycles at 1 A/g for SIBs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"7 23\",\"pages\":\"26970–26977 26970–26977\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04951\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04951","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Iron Sulfide Quantum Dots Decorated on Porous N-Doped Carbon for Lithium/Sodium-Ion Storage
Iron sulfide is considered a potential anode material for lithium- and sodium-ion batteries (LIBs/SIBs) in view of its natural abundance and high theoretical specific capacity. Nevertheless, a large volume expansion and relatively poor electronic conductivity have hindered its application. Herein, a unique composite with iron sulfide quantum dots decorated on N-doped porous carbon hierarchical frameworks (FeS@NC) is constructed via a vulcanization-carbonization strategy. The confined size of iron sulfide dots and the designed porous structure of carbon frameworks effectively alleviate the volume expansion issue upon ion insertion, while the N-doped carbon matrix efficiently enhances the electrode conductivity. Consequently, the presented FeS@NC composite exhibits excellent lithium/sodium storage performance. For LIBs, the FeS@NC electrode shows discharge capacities of 844.2 mAh/g at 0.5 A/g after 300 cycles and 578.9 mAh/g at 5 A/g in the rate test. Moreover, it delivers a high discharge capacity of 460.7 mAh/g after 350 cycles at 1 A/g for SIBs.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.