Rosy Rahman, Riya Sadhukhan, Subhadip Ghosh, Dipak Kumar Goswami and Tapan Kumar Nath*,
{"title":"Scalable Deposition of MoS2 Thin Films with Controlled Doping for Photodetectors","authors":"Rosy Rahman, Riya Sadhukhan, Subhadip Ghosh, Dipak Kumar Goswami and Tapan Kumar Nath*, ","doi":"10.1021/acsanm.4c0172910.1021/acsanm.4c01729","DOIUrl":null,"url":null,"abstract":"<p >Molybdenum disulfide (MoS<sub>2</sub>), the most widely explored transition metal dichalcogenide, is a promising candidate for developing high-performance photodetectors due to having a wide range of electric and optoelectronic properties. However, the controlled synthesis of a highly crystalline large-area MoS<sub>2</sub> thin film and the effect of noble metal (Au, Ag) nanoparticles and TM (Co) ion doping on its photoelectrical properties are still challenging. Herein, we report the direct growth of wafer-scale MoS<sub>2</sub> thin films utilizing a facile polymer-free approach by a solution-phase coating process, followed by thermal annealing. A systematic study on the photoelectrical properties of the Au-, Ag-, and Co-doped (all variants are in 10 at. wt %) MoS<sub>2</sub> photodetectors reveals that the Co-MoS<sub>2</sub> device exhibits excellent photoresponse properties, which are also evidenced theoretically. Moreover, the Co-dopant amount is varied (5, 20 at. wt %) to decipher the impact of Co-doping on the photoresponse properties and determine the optimum doping percentage. The highest (20 at. wt %) Co-doped MoS<sub>2</sub> photodetector exhibits good photoresponse characteristics at low voltage with minimal noise and high stability (retaining 86% of its photoresponsivity after the 30th day), attributed to the long-lived trap states, the photogating effect, more n-type doping, and generation of more charge carriers. Interestingly, the variations in Co-dopant concentrations lead to tunable photoresponse in different (blue, green, and red) laser illuminations, attributed to the band gap tunability with variable doping. This simple TM doping approach proposed in this study for improving the performance of MoS<sub>2</sub> photodetectors can open up an avenue for research for other 2D materials, finding potential applications in photodetection and low-voltage-based operating devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26654–26671 26654–26671"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Scalable Deposition of MoS2 Thin Films with Controlled Doping for Photodetectors
Molybdenum disulfide (MoS2), the most widely explored transition metal dichalcogenide, is a promising candidate for developing high-performance photodetectors due to having a wide range of electric and optoelectronic properties. However, the controlled synthesis of a highly crystalline large-area MoS2 thin film and the effect of noble metal (Au, Ag) nanoparticles and TM (Co) ion doping on its photoelectrical properties are still challenging. Herein, we report the direct growth of wafer-scale MoS2 thin films utilizing a facile polymer-free approach by a solution-phase coating process, followed by thermal annealing. A systematic study on the photoelectrical properties of the Au-, Ag-, and Co-doped (all variants are in 10 at. wt %) MoS2 photodetectors reveals that the Co-MoS2 device exhibits excellent photoresponse properties, which are also evidenced theoretically. Moreover, the Co-dopant amount is varied (5, 20 at. wt %) to decipher the impact of Co-doping on the photoresponse properties and determine the optimum doping percentage. The highest (20 at. wt %) Co-doped MoS2 photodetector exhibits good photoresponse characteristics at low voltage with minimal noise and high stability (retaining 86% of its photoresponsivity after the 30th day), attributed to the long-lived trap states, the photogating effect, more n-type doping, and generation of more charge carriers. Interestingly, the variations in Co-dopant concentrations lead to tunable photoresponse in different (blue, green, and red) laser illuminations, attributed to the band gap tunability with variable doping. This simple TM doping approach proposed in this study for improving the performance of MoS2 photodetectors can open up an avenue for research for other 2D materials, finding potential applications in photodetection and low-voltage-based operating devices.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.