单层分子晶体中的室温激子极化子

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lan Zhang, Maowen Ge, Boxiang Zhao, Kai Xu, Wenhao Xie, Zhen Zou, Wenfei Li, Jiaxin Zhao, Tao Wang* and Wei Du*, 
{"title":"单层分子晶体中的室温激子极化子","authors":"Lan Zhang,&nbsp;Maowen Ge,&nbsp;Boxiang Zhao,&nbsp;Kai Xu,&nbsp;Wenhao Xie,&nbsp;Zhen Zou,&nbsp;Wenfei Li,&nbsp;Jiaxin Zhao,&nbsp;Tao Wang* and Wei Du*,&nbsp;","doi":"10.1021/acs.nanolett.4c0456210.1021/acs.nanolett.4c04562","DOIUrl":null,"url":null,"abstract":"<p >Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal. The molecular monolayers behave as J-aggregates with comparable oscillator strength and narrow line width as inorganic monolayers, enabling exciton–photon strong coupling at the monolayer limit. Moreover, the coupling strength can be tuned systematically via engineering the in-plane polarization or by using a vertical stack of multiple molecular monolayers. Our research provides a new material platform for realizing strong light–matter interactions inside optical microcavities at room temperature and may motivate the development of molecular-crystal-based exciton-polaritonic devices with novel functions and new possibilities.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 50","pages":"16072–16080 16072–16080"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Exciton Polaritons in a Monolayer Molecular Crystal\",\"authors\":\"Lan Zhang,&nbsp;Maowen Ge,&nbsp;Boxiang Zhao,&nbsp;Kai Xu,&nbsp;Wenhao Xie,&nbsp;Zhen Zou,&nbsp;Wenfei Li,&nbsp;Jiaxin Zhao,&nbsp;Tao Wang* and Wei Du*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0456210.1021/acs.nanolett.4c04562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal. The molecular monolayers behave as J-aggregates with comparable oscillator strength and narrow line width as inorganic monolayers, enabling exciton–photon strong coupling at the monolayer limit. Moreover, the coupling strength can be tuned systematically via engineering the in-plane polarization or by using a vertical stack of multiple molecular monolayers. Our research provides a new material platform for realizing strong light–matter interactions inside optical microcavities at room temperature and may motivate the development of molecular-crystal-based exciton-polaritonic devices with novel functions and new possibilities.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 50\",\"pages\":\"16072–16080 16072–16080\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04562\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激子与光子在光学微腔中的强耦合导致了激子极化子的形成,它既保持了光的相干性,又保持了物质的相互作用。最近,具有较大激子振荡器强度和较高激子结合能的原子薄单层半导体被广泛用于实现室温激子极化子。在这里,我们用单层分子晶体演示了室温激子极化子。分子单层表现为 J-聚集体,具有与无机单层相当的振荡器强度和窄线宽,从而实现了单层极限的激子-光子强耦合。此外,耦合强度可以通过面内极化工程或使用多个分子单层的垂直堆叠进行系统调整。我们的研究为室温下在光学微腔内实现强光-物质相互作用提供了一个新的材料平台,并可能推动具有新功能和新可能性的基于分子晶体的激子-极性器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-Temperature Exciton Polaritons in a Monolayer Molecular Crystal

Room-Temperature Exciton Polaritons in a Monolayer Molecular Crystal

Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal. The molecular monolayers behave as J-aggregates with comparable oscillator strength and narrow line width as inorganic monolayers, enabling exciton–photon strong coupling at the monolayer limit. Moreover, the coupling strength can be tuned systematically via engineering the in-plane polarization or by using a vertical stack of multiple molecular monolayers. Our research provides a new material platform for realizing strong light–matter interactions inside optical microcavities at room temperature and may motivate the development of molecular-crystal-based exciton-polaritonic devices with novel functions and new possibilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信