通过光催化和暗反应实现水性薄膜中碘酸盐还原的碘活化

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mago Reza, Lucia Iezzi, Henning Finkenzeller, Antoine Roose, Markus Ammann and Rainer Volkamer*, 
{"title":"通过光催化和暗反应实现水性薄膜中碘酸盐还原的碘活化","authors":"Mago Reza,&nbsp;Lucia Iezzi,&nbsp;Henning Finkenzeller,&nbsp;Antoine Roose,&nbsp;Markus Ammann and Rainer Volkamer*,&nbsp;","doi":"10.1021/acsearthspacechem.4c0022410.1021/acsearthspacechem.4c00224","DOIUrl":null,"url":null,"abstract":"<p >Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO<sub>3</sub>. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe<sub>2</sub>O<sub>3</sub>, along with the dark reaction of iodate with H<sub>2</sub>O<sub>2</sub> at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I<sub>2</sub>, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I<sub>2</sub>. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H<sub>2</sub>O<sub>2</sub> led to I<sub>2</sub> release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H<sub>2</sub>O<sub>2</sub> salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H<sub>2</sub>O<sub>2</sub> in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2495–2508 2495–2508"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00224","citationCount":"0","resultStr":"{\"title\":\"Iodine Activation from Iodate Reduction in Aqueous Films via Photocatalyzed and Dark Reactions\",\"authors\":\"Mago Reza,&nbsp;Lucia Iezzi,&nbsp;Henning Finkenzeller,&nbsp;Antoine Roose,&nbsp;Markus Ammann and Rainer Volkamer*,&nbsp;\",\"doi\":\"10.1021/acsearthspacechem.4c0022410.1021/acsearthspacechem.4c00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO<sub>3</sub>. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe<sub>2</sub>O<sub>3</sub>, along with the dark reaction of iodate with H<sub>2</sub>O<sub>2</sub> at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I<sub>2</sub>, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I<sub>2</sub>. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H<sub>2</sub>O<sub>2</sub> led to I<sub>2</sub> release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H<sub>2</sub>O<sub>2</sub> salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H<sub>2</sub>O<sub>2</sub> in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"8 12\",\"pages\":\"2495–2508 2495–2508\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00224\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00224","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大气中的碘会破坏臭氧,并通过形成碘酸(HIO3)使颗粒成核。最近的野外观测表明,在老化的平流层空气和升高的尘羽中,碘酸盐从具有显著气相IO自由基浓度(0.06 pptv)的颗粒中回收。然而,目前还缺乏气溶胶中碘活化的实验室证据。本文采用包覆壁流管(CWFT)实验,对含碘酸盐的水薄膜中碘的释放进行了测试。研究了柠檬酸铁(Fe-Cit)、亚利桑那试验粉尘(ATD)和Fe2O3的光催化反应,以及碘酸盐与H2O2在90% RH和293 K条件下的暗反应。用可见光和UV-A光分别照射新鲜膜,观察到含光催化剂的辐照膜有效释放分子碘I2。对于含有Fe-Cit的薄膜,可见光比UV-A光减少了更多的碘酸盐,激活了约40%的碘酸盐作为I2。还观察到氧化性挥发性有机物(OVOC)和碘化挥发性有机化合物的形成。与Bray-Liebhafsky动力学相比,将薄膜暴露在H2O2中导致I2的释放量较少,这与H2O2在薄膜中盐析或可能的其他原因一致。光化学活化可以通过膜中的粉尘代用品,以及在照射前在黑暗中用H2O2老化膜来增强。这些发现有助于解释最近在浮尘层中IO自由基浓度升高的现场观测结果,并保证在大气模型中包含光催化碘还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iodine Activation from Iodate Reduction in Aqueous Films via Photocatalyzed and Dark Reactions

Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO3. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe2O3, along with the dark reaction of iodate with H2O2 at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I2, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I2. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H2O2 led to I2 release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H2O2 salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H2O2 in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信