Mago Reza, Lucia Iezzi, Henning Finkenzeller, Antoine Roose, Markus Ammann and Rainer Volkamer*,
{"title":"通过光催化和暗反应实现水性薄膜中碘酸盐还原的碘活化","authors":"Mago Reza, Lucia Iezzi, Henning Finkenzeller, Antoine Roose, Markus Ammann and Rainer Volkamer*, ","doi":"10.1021/acsearthspacechem.4c0022410.1021/acsearthspacechem.4c00224","DOIUrl":null,"url":null,"abstract":"<p >Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO<sub>3</sub>. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe<sub>2</sub>O<sub>3</sub>, along with the dark reaction of iodate with H<sub>2</sub>O<sub>2</sub> at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I<sub>2</sub>, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I<sub>2</sub>. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H<sub>2</sub>O<sub>2</sub> led to I<sub>2</sub> release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H<sub>2</sub>O<sub>2</sub> salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H<sub>2</sub>O<sub>2</sub> in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2495–2508 2495–2508"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00224","citationCount":"0","resultStr":"{\"title\":\"Iodine Activation from Iodate Reduction in Aqueous Films via Photocatalyzed and Dark Reactions\",\"authors\":\"Mago Reza, Lucia Iezzi, Henning Finkenzeller, Antoine Roose, Markus Ammann and Rainer Volkamer*, \",\"doi\":\"10.1021/acsearthspacechem.4c0022410.1021/acsearthspacechem.4c00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO<sub>3</sub>. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe<sub>2</sub>O<sub>3</sub>, along with the dark reaction of iodate with H<sub>2</sub>O<sub>2</sub> at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I<sub>2</sub>, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I<sub>2</sub>. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H<sub>2</sub>O<sub>2</sub> led to I<sub>2</sub> release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H<sub>2</sub>O<sub>2</sub> salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H<sub>2</sub>O<sub>2</sub> in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"8 12\",\"pages\":\"2495–2508 2495–2508\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00224\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00224","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Iodine Activation from Iodate Reduction in Aqueous Films via Photocatalyzed and Dark Reactions
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO3. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes. However, laboratory evidence for iodine activation from aerosols is currently missing. Here, a series of coated-wall flow tube (CWFT) experiments test for iodine release from thin aqueous films containing iodate. Photocatalyzed reactions were studied using iron(III) citrate (Fe–Cit), Arizona Test Dust (ATD), and Fe2O3, along with the dark reaction of iodate with H2O2 at 90% RH and 293 K. Fresh films were separately irradiated with visible and UV-A light, and the efficient release of molecular iodine, I2, was observed from all irradiated films containing photocatalysts. For films with Fe–Cit, visible light reduced larger amounts of iodate than UV-A light, activating ∼40% of iodate as I2. The formation of oxygenated volatile organic compounds (OVOC) and iodinated OVOC was also observed. Dark exposure of films to H2O2 led to I2 release in smaller amounts than suggested by Bray–Liebhafsky kinetics, consistent with H2O2 salting-out in the films, or possibly other reasons. Photochemical activation is enhanced by dust proxies in the film, and by aging the film with H2O2 in the dark prior to irradiation. These findings help explain recent field observations of elevated IO radical concentrations in lofted dust layers, and warrant the inclusion of photocatalyzed iodate reduction in atmospheric models.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.