David O. De Haan*, Lelia Nahid Hawkins, Elyse A. Pennington, Hannah G. Welsh, Alyssa A. Rodriguez, Michael A. Symons, Alyssa D. Andretta, Michael A. Rafla, Chen Le, Audrey C. De Haan, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui and Jean-François Doussin,
{"title":"Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing","authors":"David O. De Haan*, Lelia Nahid Hawkins, Elyse A. Pennington, Hannah G. Welsh, Alyssa A. Rodriguez, Michael A. Symons, Alyssa D. Andretta, Michael A. Rafla, Chen Le, Audrey C. De Haan, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui and Jean-François Doussin, ","doi":"10.1021/acsearthspacechem.4c0023710.1021/acsearthspacechem.4c00237","DOIUrl":null,"url":null,"abstract":"<p >Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m<sup>2</sup> g<sup>–1</sup>). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>, C<sub>10</sub>H<sub>22</sub>O<sub>9</sub>, C<sub>15</sub>H<sub>27</sub>NO<sub>7</sub>, C<sub>17</sub>H<sub>23</sub>NO<sub>5</sub>, and C<sub>18</sub>H<sub>32</sub>N<sub>2</sub>O<sub>9</sub> as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2574–2586 2574–2586"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00237","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00237","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
羟基丙酮(HA)是异戊二烯和其他有机前体的大气氧化产物,可形成褐碳(BrC)。测量到的 HA 与硫酸铵、甲胺和甘氨酸的大量水相反应速率表明,这些反应无法与水相羟基自由基氧化反应竞争。在气态或颗粒状 HA 的云室光氧化实验中,如果存在相同的含 N 物种,BrC 的形成较少,在 365 纳米波长下的质量吸收系数相似(0.05 m2 g-1)。不过,气溶胶体积和气相物种浓度的快速变化表明,缺乏 BrC 并非由于反应缓慢所致。基于过滤器的超高效液相色谱/(+)ESI-HR-QTOFMS 分析显示,SOA 严重低聚,在所有情况下平均分子质量都在∼400 amu。低聚物中平均含有 3.9 个 HA、1.5 个氨和 1.6 个其他小醛,按丰度降序排列包括乙醛、乙醛、乙二醛、乙二醛和甲基乙二醛。PTR-ToF-MS 证实了这些醛的生成。我们发现 C17H26O5、C10H22O9、C15H27NO7、C17H23NO5 和 C18H32N2O9 是 HA 低聚物的潜在示踪离子。我们推测,由于 N-杂环(如咪唑/吡嗪)的形成可以忽略不计,因此低聚物的高效形成不会产生大量 BrC。虽然 HA 光氧化不太可能成为大气中 BrC 的重要来源,但它可能对水溶液 SOA 的形成有重要作用。
Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing
Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m2 g–1). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify C17H26O5, C10H22O9, C15H27NO7, C17H23NO5, and C18H32N2O9 as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.